Skip to main content

Abstract

Fertilizers provide plants with the nutrients they need for their growth and development. Plants live, grow, and reproduce by taking up water and nutrients, carbon dioxide from the air, and energy from the sun. Apart from carbon, hydrogen, and oxygen, which collectively make up 90–95 percent of the dry matter of all plants, other nutrients needed by plants come essentially from the media in which they grow—essentially in the soil. The other nutrients are subdivided into primary nutrients (nitrogen, phosphorus, and potassium) and secondary nutrients (calcium, magnesium, and sulfur). In addition, plants also need other nutrients in much smaller amounts, and they are referred to as micro-nutrients (boron, chlorine, copper, iron, manganese, molybdenum, and zinc).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smil, V., Cycles of Life, Scientific American Library, New York, NY, 1997.

    Google Scholar 

  2. Food and Agriculture Organization of the United Nations (FAO), FAOSTAT database <http://faostat.fao.org>, Rome, Italy (2002).

    Google Scholar 

  3. United Nations Industrial Development Organization (UNIDO) and International Fertilizer Development Center (IFDC), Fertilizer Manual, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

    Google Scholar 

  4. Herring, J. R., and Fantel, J. R., “Phosphate Rock Demand into the Next Century: Impact on World Food Supply,” Nonrenewable Resources, 2(3), 226–241 (1993).

    Article  Google Scholar 

  5. British Petroleum-Amoco, Statistical Review of World Energy, 1998.

    Google Scholar 

  6. Odell, P., Fossil Fuel Resources in the 21st Century, International Atomic Energy Agency, Vienna, Austria, 1999.

    Google Scholar 

  7. International Fertilizer Development Center (IFDC), Compaction—Alternative Approach for Granular Fertilizers, IFDC Technical Bulletin T-25, 1983.

    Google Scholar 

  8. McVicar, M. H., Using Commercial Fertilizers, 3rd ed., The Interstate Printers and Publishers, Inc., 1970.

    Google Scholar 

  9. Hignett, T. P., “History of World Fertilisers and Manufacturing Processes,” Ind. Chem. Manufacturer, 9(4), 13–17 (1971).

    Google Scholar 

  10. Young, R. D., and Achorn, F. P., “Trends in U.S. Fertilizer Technology,” TVA Bull. Y-133, pp. 5–7, Tennessee Valley Authority, Muscle Shoals, AL (Aug. 1978).

    Google Scholar 

  11. The Role of Phosphorus in Agriculture, Am. Soc. Agron., Crop Science Soc. Am., and Soil Science Soc. Am., pp. 198–199, Madison, WI, 1980.

    Google Scholar 

  12. Hignett, T. P. “Nitrophosphate Process Advantages and Disadvantages,” in Proc. 15th Annual Meeting Fert. Ind. Round Table, pp. 92–95, 1965.

    Google Scholar 

  13. Getsinger, J. G., Houston, E. C., and Achorn, F. P., “Production of Diammonium Phosphate by Continuous Vacuum Crystallization,” J. Agr. Food Chem., 5, 433–436 (June 1957).

    Article  CAS  Google Scholar 

  14. Young, R. D., Hicks, G. C., and Davis, C. H., “TVA Process for Production of Granular Diammonium Phosphate,” J. Agr. Food Chem., 10, 442–447 (Nov. 1962).

    Article  CAS  Google Scholar 

  15. U.S. Patent 3,153,574.

    Google Scholar 

  16. “New Developments in Fertilizer Technology,” 8th Demonstration, TVA Bull. Y-12, Tennessee Valley Authority (1970).

    Google Scholar 

  17. Young, R. D., and Hicks, G. C., “Production of Monoammonium Phosphate in a TVA-Type Ammonium Phosphate Granulation System,” Comm. Fert., 114(2), 26–27 (Feb. 1967).

    CAS  Google Scholar 

  18. Lehr, J. R., and McClellan, G. H., “Phosphate Rocks; Important Factors in Their Economic and Technical Evaluation,” CENTO Symposium on the Mining and Beneficiation of Fertilizer Minerals, pp. 192–242, November 19–24, 1973.

    Google Scholar 

  19. Pelovski, Y., and Garrett, M. K., Partially Acidulated Phosphate Rock Fertilisers—Agronomic, Environmental and Production Aspects, Proceedings No. 364, The Fertiliser Society.

    Google Scholar 

  20. Yates, L. D., Nielsson, F. T., Fox, E. J., and Magness, R. M., “Enriched and Concentrated Superphosphate,” Industrial and Engineering Chemistry, 45(3), 681–690 (1953).

    Article  CAS  Google Scholar 

  21. Walthall, J. H., and G. L. Bridger, “Fertilizer by Fusion of Rock Phosphate with Olivine,” Ind. Eng. Chem., 35(7), 744–777 (1943).

    Article  Google Scholar 

  22. Thompson, W. H., “New Route Cuts Costs for Potassium Orthophosphates,” Chem. Eng., 78(8), 83–85 (1971).

    CAS  Google Scholar 

  23. Drechsel, E. K., “Potassium Phosphates: The New Generation of SUPER Phosphates,” Paper presented to the American Chemical Society, Division of Fertilizer and Soil Chemistry, Chicago, Illinois, August 28, 1973.

    Google Scholar 

  24. Giese, A., “Environmental Responsibility on the Farm—The Impact on the Fertilizer and Agriculture Industry,” in Environmental Challenges of Fertilizer Production-An Examination of Progress and Pitfalls, Proceedings of an International Workshop, J. J. Schultz and E. N. Roth (Eds.), IFDC, Muscle Shoals, AL, September 17–19, 1998.

    Google Scholar 

  25. Yates, L. D., Nielson, F. T., and Hicks, G. C., “TVA Continuous Ammoniator for Superphosphates and Fertilizer Mixtures,” Part I and Part II of Farm Chemicals (August 1954).

    Google Scholar 

  26. U.S. Patent 2,741,545.

    Google Scholar 

  27. Environmental Challenges of Fertilizer Production—An Examination of Progress and Pitfalls, Proceedings of an International Workshop, J. J. Schultz and E. N. Roth (Eds.), Muscle Shoals, AL, September 17–19, 1998.

    Google Scholar 

  28. “New Developments in Fertilizer Technology,” 9th Demonstration, TVA Bull. Y-50, Tennessee Valley Authority (1972).

    Google Scholar 

  29. “New Developments in Fertilizer Technology,” 11th Demonstration, TVA Bull. Y-107, Tennessee Valley Authority (1976).

    Google Scholar 

  30. Medbery, J., “Experience with Pipe-Cross Reactor,” Proc. Fert. Ind. Round Table, pp. 52–55, 1971.

    Google Scholar 

  31. Baggett, K. J., and Brunner, D. J., “MFA’s Experience with TVA Cross-Pipe Reactor,” Proc. Fert. Ind. Round Table, pp. 64–70, 1977.

    Google Scholar 

  32. Fittell, R. S., Hollingworth, L. A., and Forney, J. G., “Manufacture of Granular Ammonium Phosphates Using a Pipe Reactor Process,” Proc. Fert. Ind. Round Table, pp. 70–81, 1977.

    Google Scholar 

  33. Hoffmeister, G., Watkins, S. C., and Silverberg, J., “Bulk Blending of Fertilizer Material: Effect of Size, Shape, and Density on Segregation,” J. Agr. Food Chem., 12, 64–69 (Jan./Feb. 1964).

    Article  CAS  Google Scholar 

  34. Hoffmeister, G., “Compatibility of Raw Materials in Blended Fertilizers—Segregation of Raw Materials,” Proc. 12th Annual Meeting Fert. Ind. Round Table, pp. 83–88, 1962.

    Google Scholar 

  35. Young, R. D., “Providing Micronutrients in Bulk-Blended, Granular, Liquid and Suspension Fertilizer,” Comm. Fert., 118(1), 21–24 (Jan. 1969).

    Google Scholar 

  36. Young, R. D., “Production of Compound Fertilizers from Intermediates in Local Plants,” TVA Bull. Z-30, pp. 12–20, Tennessee Valley Authority (1971).

    Google Scholar 

  37. McKnight, D., and Striplin, M. M., “Phosphoric Acid of High Concentration,” J. Agr. Chem., 13, 33–34 (Aug. 1958).

    CAS  Google Scholar 

  38. Phillips, A. B., “Concentration Wet-Processes Acid to Superphosphoric Acid,” Farm Chem., 126, 36, 38, 62 (June 1963).

    CAS  Google Scholar 

  39. Meline, R. S., Lee, R. G., and Scott, W. C., “Use of Pipe Reactor in Production of Liquid Fertilizers with Very High Polyphosphate Content,” Fert. Soln., 16(2), 32–45 (Mar./Apr. 1972).

    Google Scholar 

  40. US. Patent 3,775,534.

    Google Scholar 

  41. Walters, H. K., Jr., “Salt Suspension Fertilizers,” Comm. Fert., 25–26 (Sept. 1959).

    Google Scholar 

  42. Newsom, W. S., Jr., “Suspension Fertilizers,” Solutions, 30–35 (Jan.–Feb. 1960).

    Google Scholar 

  43. Sawyer, E. W., Polon, J. A., and Smith, H. A., “The Stabilization of Suspension Fertilizers with Colloidal Attapulgite,” Solutions, 36–43 (Jan.–Feb. 1960).

    Google Scholar 

  44. Mann, C., II, McGill, K. E., and Jones, T. M., I&EC Product Research and Development, pp. 488–495 (Sept. 1982).

    Google Scholar 

  45. Trenkel, M. E., Improving Fertilizer Use Efficiency: Controlled-Release and Stabilized Fertilizers in Agriculture, International Fertilizer Industry Association, Paris, France, 1997.

    Google Scholar 

  46. Hamamoto, M., “Isobutylidine Diurea as a Slow-Acting Nitrogen Fertilizer and Studies in this Field in Japan,” Proceedings No. 90, The Fertiliser Society, London, 1966.

    Google Scholar 

  47. Clark, K. G., Yee, J. Y., and Love, K. S., “New Synthetic Nitrogen Fertilizers, Preparation and Properties of Urea-Form,” Ind. Eng. Chem., 40(7), 1178–1183 (1948).

    Article  CAS  Google Scholar 

  48. Kolterman, D. W., and Rennie, W. W., “Ureaform Fertilizers,” in The Chemistry and Technology of Fertilizers, pp. 48–54, V. Sauchelli (Ed.), Rheinhold Publishing Co., New York, NY, 1960.

    Google Scholar 

  49. Ando, J., “Developments in Granulation of Mixed Fertilizers in Japan,” Proceedings of the 20th Annual Meeting Fertilizer Industry Round Table, pp. 85–93, Memphis, TN, 1970.

    Google Scholar 

  50. Kuwabara, M., Hayamizu, S., and Hatakeyama, A., “Trends in Urea-Based Compound Fertilizer Technology,” in Granular Fertilizers and Their Production, pp. 125–147, British Sulphur Corporation, London, England, 1977.

    Google Scholar 

  51. Nielsson, F. T., “IMC Experience in Specialty Fertilizer Manufacture,” Proceedings of the 23rd Annual Meeting of the Fertilizer Industry Round Table, pp. 33–42, Washington, DC, 1973.

    Google Scholar 

  52. Powell, R., Controlled Release Fertilizers, Noyes Development Corporation, Park Ridge, NJ, 1968.

    Google Scholar 

  53. Young, R. D., “TVA’S Development of Sulfur-Coated Urea,” TVA Bull. Y-79, Tennessee Valley Authority, Muscle Shoals, AL (1974).

    Google Scholar 

  54. United Nations, Department of Economic and Social Affairs, Population Division, World Population to 2300 (2004).

    Google Scholar 

  55. Rutland, D. W., “Fertilizer Caking: Mechanisms, Influential Factors, and Methods of Prevention,” Fertilizer Research, 30, 99–114 (1991).

    Article  CAS  Google Scholar 

  56. Hofstee, J. S., Physical Properties of Fertilizer in Relation to Handling and Spreading, Wageningen Agricultural University, Wageningen, The Netherlands (1993).

    Google Scholar 

  57. International Organization for Standardization, Central Secretariat, 1, rue de Varembe, Case Postale 5b, ch-1211, Geneva 20, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James A. Kent Ph.D. (Professor of Chemical Engineering and Dean of Engineering)

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roy, A.H. (2007). Fertilizers and Food Production. In: Kent, J.A. (eds) Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27843-8_24

Download citation

Publish with us

Policies and ethics