Skip to main content

Abstract

The United States contains about one-third of the world’s coal reserves, and coal represents over 90 percent of U.S. proven reserves of fossil fuels. Recoverable reserves of U.S. coal are estimated to be 250 billion tons. Bituminous coals (with a heating value of 10,000–15,000 BTU/lb) comprise nearly one-half of total U.S. coal reserves. Eastern U.S. coals are generally bituminous. Western and southwestern U.S. coals are mainly sub-bituminous (with a heating value of 9000–12,000 BTU/lb) and lignite (with a heating value of 8000–10,000 BTU/lb). Coal is a major source of energy for electric power production and process heat and can serve as a source of synthetic fuels and feedstock for the petrochemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dryden, I. G. C., “Chemical Constitution and Reactions of Coal,” in Chemistry of Coal Utilization, Supplementary Volume, H. H. Lowry (Ed.), pp. 223–295, John Wiley & Sons, New York, 1963.

    Google Scholar 

  2. Wender, I., Heredy, L. A., Neuworth, M. B., and Dryden, I. G. C., “Chemical Reactions and the Constitution of Coal,” in Chemistry of Coal Utilization, M. A. Elliott (Ed.), Second Supplementary Volume, pp. 425–522, John Wiley & Sons, New York, 1981.

    Google Scholar 

  3. Gavalas, G. R., “Coal Pyrolysis,” in Coal Science and Technology, Vol. 4, Elsevier, 1982.

    Google Scholar 

  4. Lin, Y. A. (Ed.), Physical Cleaning of Coal—Present and Developing Methods, Marcel Dekker, New York, 1982.

    Google Scholar 

  5. Leonard, J. W. (Ed.), Coal Preparation, 5th ed., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, 1992.

    Google Scholar 

  6. Osborne, D. G., Coal Preparation Technology, Graham & Trotman, 1989.

    Google Scholar 

  7. Gala, H. B., Srivastava, R. D., Rhee, K. H., and Hucko, R. E., “Coal Preparation,” Vol. 7, No. 1, July 1, 1989.

    Google Scholar 

  8. Sakkestad, B. A. (Ed.), The Proceedings of the 23rd International Technical Conference on Coal utilization & Fuel Systems, Coal & Slurry Technology Association, Washington, DC, 1998.

    Google Scholar 

  9. Stultz, S. C., and Kitto, J. B. (Eds.), Steam—Its Generation and Use, The Babcock & Wilcox Company, Barberton, Ohio, 1992.

    Google Scholar 

  10. Singer, J. G. (Ed.), Combustion Fossil Power—A Reference Book on Burning and Steam Generation, Combustion Engineering, Inc., Windsor, Connecticut, 1991.

    Google Scholar 

  11. Bartok, W., and Sarofim, A. F. (Eds.), Fossil Fuel Combustion—A Source Book, John Wiley & Sons, New York, 1991.

    Google Scholar 

  12. Bartok, W., Lyon, R. K., Mclntyre, A. D., Ruth, L. A., and Sommerlad, R. E., “Combustors: Applications and Design Considerations,” Chem. Eng. Progr, 84(3), 54 (1988).

    CAS  Google Scholar 

  13. Ceely, F J., and Daman, E. L., “Combustion Process Technology,” in Chemistry of Coal Utilization, M. A. Elliott (Ed.), Wiley-Interscience, New York, 1981.

    Google Scholar 

  14. Department of Energy, Clean Coal Technology Compendium, www.lanl.gov/projects/cctc

    Google Scholar 

  15. Corcoran, E., “Cleaning Up Coal,” Sci. Am., 264(5), 106 (1991).

    Article  Google Scholar 

  16. Haggin, J., “Coal,” Chem. Eng. News, p. 32 (June 17, 1991).

    Google Scholar 

  17. Environmental Protection Agency, “Mercury Study Report to Congress Volume VII—An Evaluation of Mercury Control Technologies and Costs,” EPA-452/R-97-010 (Dec. 1997).

    Google Scholar 

  18. Brown, T., Smith, D, Hargis, R., and O’Dowd, W., “Mercury Measurement and Its Control: What We Know, Have Learned, and need to Further Investigate;” J. Air Waste Management Assn., 1–97 (June 1999).

    Google Scholar 

  19. Schobert, H. H., Coal: The Energy Source of the Past and the Future, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  20. Haggin, J., Chem. Eng. News, 69(21), 33 (1990).

    Google Scholar 

  21. Sondreal, E. A., Ness, R. O., Timpe, R. C., Knudson, C. L., Jha, M. C., Berggren, M. H., and Sinor, J. E., Proc. Sixth Annual Int. Pittsburgh Coal Conf., Vol. 2, pp. 785–794, Sept. 25–29, 1989.

    Google Scholar 

  22. Synthetic Fuels Assn., Inc., “Coal Gasification Systems: A Guide to Status, Applications and Economics,” EPRI AP-3109, Project 2207 (June 1983).

    Google Scholar 

  23. SEA Pacific, Inc., “Coal Gasification Guidebook: Status, Applications, and Technologies,” Research Project 2221-39, prepared for EPRI, Final Report (Dec. 1993).

    Google Scholar 

  24. Shinner, R., Fourth Technical Meeting of COGARN, presented in “Coal Gasification: Direct Applications and Syntheses of Chemicals and Fuels; A Research Needs Assessment,” by Penner, S. S., and others for US DOE, Office of Energy Research, DOE Contract No. DE-AC01-85ER30076, NTIS-PR-360 (1987).

    Google Scholar 

  25. a. Schulz, Hans and Claeys, Michael (Eds.), Applied Catalysis A: General, Vol. 186, Recent Advances in Fischer-Tropsch Synthesis, Elsevier, Amsterdam (1999). b. Dry, M.E. and Steynberg, A.P. (Eds.), Studies in Surface Science and Catalysis, Vol. 152, Fischer-Tropsch Technology, Elsevier, Amsterdam (2004).

    Google Scholar 

  26. Newman, S. A. (Ed.), Acid and Sour Gas Treating Processes, Gulf Publishing Co., Houston, 1985.

    Google Scholar 

  27. Spencer, D. R., Alpert, S. B., and Gluckman, M. J., “Integrated Coal Gasification Combined Cycles (IGCC) an Emerging Commercial Option for the Power Industry,” paper presented at 1985 ACS Meeting, CA, 1985.

    Google Scholar 

  28. Spencer, D. R, 1986, The Commercial Implications of the Cool Water Project for the Electric Power Industry, EPRI, Palo Alto, CA, 1986.

    Google Scholar 

  29. Khan, M. R., and Kurata, T., in “The Feasibility of Mild Gasification of Coal: Research Needs,” DOE/METC-85/4019, NTRS/DE85013625, 1985.

    Google Scholar 

  30. Probstein, R. F, and Hicks, R. E., Synthetic Fuels, McGraw-Hill, New York, 1982.

    Google Scholar 

  31. Seglin, L., and Bresler, S. A., “Low-Temperature Pyrolysis Technology,” in Chemistry of Coal Utilization, M. A. Elliott (Ed.), Second Supplementary Volume, pp. 785–846, John Wiley & Sons, New York, 1981.

    Google Scholar 

  32. Howard, J. B., “Fundamentals of Coal Pyrolysis and Hydropyrolysis,” in Chemistry of Coal Utilization, M. A. Elliott (Ed.), Second Supplementary Volume, pp. 665–784, John Wiley & Sons, New York, 1981.

    Google Scholar 

  33. Solomon, P. R., and Serio, M. A., “Evaluation of Coal Pyrolysis Kinetics,” in Fundamentals of Physical Chemistry of Pulverized Coal Combustion, J. Lahaye and G. Prado (Eds.), Martinus Nijhoff Publishers, 1987.

    Google Scholar 

  34. Khan, M. R., “Thermoplastic Properties of Coal Pyrolysis at Elevated Pressures: Effects of Experimental Variables, Inorganic Additives, and Preoxidation,” Ph.D. thesis, The Pennsylvania State University, pp. 333 (1985).

    Google Scholar 

  35. Anthony, D. B., and Howard, J. B., “Coal Devolatilization and Hydrogasification,” AlChE J., 24(2), 625–656 (1976).

    Google Scholar 

  36. Solomon, P. R., Serio, M. A., and Suuberg, E. M., “Coal Pyrolysis: Experiments, Kinetics Rates and Mechanisms,” Progress in Energy and Combustion Science (1992), Vol. 18, No. 2, pp. 133–220.

    Article  CAS  Google Scholar 

  37. Arthur, J. R., and Wadsworth, K. D., “The Effect of Inorganic Compounds on the Behavior of Coals and Cokes,” BCURA Progress in Coal Science, pp. 396–410 (1950).

    Google Scholar 

  38. Gryaznov, N. S., and Petrov, V K., Coke and Chemistry, pp. 27–32, USSR (Coal Tar RA Translation), 1960.

    Google Scholar 

  39. Given, P. H., and Yarzab, R. F., “Analysis of the Organic Substance of Coals: Problems Posed by the Presence of Mineral Matter,” in Analytical Methods for Coal and Coal Products, Vol. 11, C. Karr, Jr. (Ed.), pp. 3–41, Academic Press, Inc., New York, 1978.

    Google Scholar 

  40. Walker, P. L., Jr., Davis, A., Verina, S. K., Rivera-Utrilia, J., and Khan, M. R., “Interaction of Gases, Vapors, and Liquids with Coals and Minerals at Ambient Temperatures—Their Use to Characterize Porosity,” The Pennsylvania State University, DOE-30013-19, Under Contract No. DE-AC22-80PC30013 (1984).

    Google Scholar 

  41. Gray, R. H., Drucker, H., and Massey, M. J. (Eds.), Toxicology of Coal Conversion Processing, John Wiley & Sons, New York, 1988.

    Google Scholar 

  42. Neavel, R. C., “Liquefaction of Coal in Hydrogen-Donor and Non-donor Vehicles,” Fuel, 55, 237–242 (1976).

    Article  CAS  Google Scholar 

  43. Derbyshire, R, and Stansberry, P., “Comments on the Reactivity of Low-Rank Coals in Liquefaction,” Fuel, 66, 1741–1742 (1987).

    Article  CAS  Google Scholar 

  44. Wu, W. R. K., and Storch, H. H., “Hydrogenation of Coal Tar,” U.S. Bureau of Mines Bulletin No. 633 (1968).

    Google Scholar 

  45. Donath, E. E., and Hoering, M., “Early Coal Hydrogenation Catalysis,” Fuel Proc. Tech., 1, 3–20 (1977).

    Article  CAS  Google Scholar 

  46. Ministry of Fuel and Power, Report on the Petroleum and Synthetic Oil Industry of Germany, Ministry of Fuel and Power, His Majesty’s Stationery Office, London, 1947.

    Google Scholar 

  47. Green, D. W (Ed.), Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-Hill, New York, 1997.

    Google Scholar 

  48. Derbyshire, F., “Catalysis in Coal Liquefaction: New Directions for Research,” IEACR/08, IEA Coal Research, London, 1968.

    Google Scholar 

  49. DOE, “Coal Liquefaction: A Research and Development Needs Assessment,” DOE Coal Liquefaction Research Needs (COLIRN) Panel Assessment, Final Report, Vol. 2, DOE/ER-0400 (Mar. 1989).

    Google Scholar 

  50. Derbyshire, F., “Coal Liquefaction,” in Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A7, VCH Publishers, New York, 1986.

    Google Scholar 

  51. Maa, P. S., Trachte, K. L., and Williams, R. D., “Solvent Effects in Exxon Donor Solvent Coal Liquefaction,” presented at the ACS National Meeting, New York, Aug. 23–28.

    Google Scholar 

  52. Neavel, R. C., “Exxon Donor Solvent Liquefaction Process,” Phil. Trans. R. Soc. Lond. A, 300, 141–156 (1981).

    Article  CAS  Google Scholar 

  53. Tomlinson, G. C., Gray, D., Neuworth, M. B., and Talib, A., “The Impact of Rank-Related Coal Properties on the Response of Coals to Continuous Direct Liquefaction Processes,” Sandia Contractors Report, SAND85-7238 (Oct. 1985).

    Google Scholar 

  54. Holmes, D. R., Jr., Mitchell, J., and Farthing, S., “A Final Report of Kentucky’s Role in the H-Coal Pilot Plant Project,” Kentucky Energy Cabinet (Aug. 1983).

    Google Scholar 

  55. EPRI, “Two-Stage Coal Liquefaction Integrated Configurations: The Advanced Coal Liquefaction R&D Facility, Wilsonville, Alabama,” EPRI GS-7293 (May 1991).

    Google Scholar 

  56. Gollakota, S. V., Lee, J. M., and Davies, O. L., “Process Optimization of Close-Coupled Integrated Two-stage Liquefaction by the Use of Cleaned Coals,” Fuel Proc. Technol., 22, 205–216 (1989).

    Article  CAS  Google Scholar 

  57. Nalitham, R. V., Lee, J. M., Lamb, C. W., and Johnson, T. W., “Two-Stage Coal Liquefaction Process Performance with Close-Coupled Reactors,” Fuel Proc. Technol., 17, 13–27 (1987).

    Article  CAS  Google Scholar 

  58. Rosenthal, J. W., Dahlberg, A. J., Kuehler, C. W., Cash, D. R., and Freedman, W., “The Chevron Coal Liquefaction Process (CCLP),” Fuel, 61, 1045–1049 (1982).

    Article  CAS  Google Scholar 

  59. El Sawy, A., Gray, D., Talib, A., and Tomlinson, G., “A Techno-Economic Assessment of Recent Advances in Direct Coal Liquefaction,” Sandia Contractor Report SAND86-7103 (June 1986).

    Google Scholar 

  60. Derbyshire, F. J., “Role of Catalysis in Coal Liquefaction Research and Development,” Energy and Fuels, 3, 273–277 (1989).

    Article  CAS  Google Scholar 

  61. Wender, I., “Reactions of Synthesis Gas,” Fuel Proc. Technol., 48(3) (September 1996).

    Google Scholar 

  62. Schultz, H, Pure Appl. Chem., 51, 2225–2241 (1979).

    Article  Google Scholar 

  63. Dry, M. E., in Chemicals From Coal: New Processes, K. R. Payne (Ed.), Critical Reports on Applied Chemistry, Vol. 14, Chapter 4, John Wiley & Sons, Chichester, 1987.

    Google Scholar 

  64. Oara, J. B., et al., “Petrochemical Feedstocks from Coal,” Chem. Eng. Prog., 64–72 (June 1977).

    Google Scholar 

  65. O’Hara, J. B., et al., “Project POGO—A Coal Refinery,” Chem. Eng. Prog., 46–63 (Aug. 1978).

    Google Scholar 

  66. Conference on Chemical Feedstocks Alternatives, American Institute of Chemical Engineers and National Science Foundation, Houston, Texas, October 2–5, 1977.

    Google Scholar 

  67. Wender, I., in Chemicals from Coal: New Processes, K. R. Payne (Ed.), Critical Reports on Applied Chemistry, Vol. 14, Chapter 5, John Wiley & Sons, Chichester, 1987.

    Google Scholar 

  68. Cornils, B., in Chemicals from Coal: New Processes, K. R. Payne (Ed.), Critical Reports on Applied Chemistry, Vol. 14, Chapter 5, John Wiley & Sons, Chichester, 1987.

    Google Scholar 

  69. Pruett, R. L, Science, 211, 11–16 (1981).

    Article  CAS  Google Scholar 

  70. Shreve, R. N., Chemical Process Industries, Chapter 5, McGraw-Hill, New York, 1967.

    Google Scholar 

  71. Spitz, P. H., CHEMTECH, 19, 92–100 (1989).

    CAS  Google Scholar 

  72. Anderson, L. L., and Tillman, D. A., Synthetic Fuels from Coal, Wiley-Interscience, New York, 1979.

    Google Scholar 

  73. Moloy, K. G., and Wegman, R. W., Organometallics, 8, 2883 (1989).

    Article  CAS  Google Scholar 

  74. Jedlinski, Z. J., and Gaik, U., Polimery, 29, 424 (1984).

    CAS  Google Scholar 

  75. Haggin, J., Chem. Eng. News, 67(7), 28 (1989).

    Google Scholar 

  76. Coal and Synfuels Technology, 11(16), 1 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James A. Kent Ph.D. (Professor of Chemical Engineering and Dean of Engineering)

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srivastava, R.D., McIlvried, H.G., Winslow, J.C., Maronde, C.P., Noceti, R.P. (2007). Coal Technology for Power, Liquid Fuels, and Chemicals. In: Kent, J.A. (eds) Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27843-8_19

Download citation

Publish with us

Policies and ethics