Skip to main content

Part of the book series: Problem Books in Mathematics ((1605,volume 1))

Abstract

We can partition the positive integers into three classes:

  • the unit 1

  • the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

  • the composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, ...

A number greater than 1 is prime if its only positive divisors are 1 and itself; otherwise it’s composite. Primes have interested mathematicians at least since Euclid, who showed that there are infinitely many. The largest prime in the Bible is 22273 at Numbers, 3 xliii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • William Adams and Daniel Shanks, Strong primality tests that are not sufficient, Math. Comput.,39(1982) 255–300.

    Google Scholar 

  • Manindra Agrawal, Neeraj Kayal and Nitin Saxena, Primes is in P, Annals of Math.,(to appear)

    Google Scholar 

  • F. Arnault, Rabin-Miller primality test: composite numbers which pass it, Math. Comput., 64 (1995) 355–361.

    MathSciNet  MATH  Google Scholar 

  • Stephan Baier, On the Bateman-Horn conjecture, J. Number Theory, 96 (2002) 432–448.

    MathSciNet  MATH  Google Scholar 

  • Friedrich L. Bauer, Why Legendre made a wrong guess about ir(x), and how Laguerre’s continued fraction for the logarithmic integral improved it, Math. Intelligencer, 25 (2003) 7–11.

    MathSciNet  MATH  Google Scholar 

  • Folkmar Bornemann, PRIMES is in P: a breakthrough for “Everyman”, Notices Amer. Math. Soc., 50(2003) 545–552; MR 2004c: 11237.

    Google Scholar 

  • Henri Cohen, Computational aspects of number theory, Mathematics unlimited — 2001 and beyond, 301–330, Springer, Berlin, 2001; MR 2002i: 11126.

    Google Scholar 

  • Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integer Seq., 4(2001) no.1 Article 01.1.7; MR 2002j: 11017.

    Google Scholar 

  • Richard E. Crandall and Carl Pomerance, Prime Numbers: a computational perspective, Springer, New York, 2001; MR 2002a: 11007.

    Google Scholar 

  • Marc Deléglise and Joel Rivat, Computing 7r(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comput.,65(1996) 235–245; MR 96d:11139.

    Google Scholar 

  • L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger of Mathematics, 33 (1904) 155–161.

    Google Scholar 

  • Pierre Dusart, The kth prime is greater than k(ln k + ln ln k — 1) for k 2, Math. Comput., 68(1999) 411–415; MR 99d: 1 1133.

    Google Scholar 

  • P. D. T. A. Elliott, On primes and powers of a fixed integer, J. London Math. Soc. (2), 67(2003) 365–379; MR 2003m: 11151.

    Google Scholar 

  • Andrew Granville, Unexpected irregularities in the distribution of prime numbers, Proc. Internat. Congr. Math., Vol. 1, 2 (Zurich, 1994 ), 388–399.

    Google Scholar 

  • Andrew Granville, Prime possibilities and quantum chaos, Emissary,Spring 2002, ppl, 12–18.

    Google Scholar 

  • Wilfrid Keller, Woher kommen die größten derzeit bekannten Primzahlen? Mitt. Math. Ges. Hamburg, 12(1991) 211–229; MR 92j: 1 1006.

    Google Scholar 

  • J. C. Lagarias, V. S. Miller and A. M. Odlyzko, Computing 7r(x): the MeisselLehmer method, Math. Comput., 44(1985) 537–560; MR 86h: 1 1111.

    Google Scholar 

  • J. C. Lagarias and A. M.Odlyzko, Computing 7r(x): an analytic method, J. Algorithms, 8(1987) 173–191; MR 88k: 1 1095.

    Google Scholar 

  • Arjen K. Lenstra and Mark S. Manasse, Factoring by electronic mail, in Advances in Cryptology EUROCRYPT’89, Springer Lect. Notes in Comput. Sci., 434(1990) 355–371; MR 91i: 1 1182.

    Google Scholar 

  • Hendrik W. Lenstra, Factoring integers with elliptic curves, Ann. of Math. (2), 126(1987) 649–673; MR 89g: 1 1125.

    Google Scholar 

  • Hendrik W. Lenstra and Carl Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc., 5(1992) 483–916; MR 92m: 1 1145.

    Google Scholar 

  • Richard F. Lukes, Cameron D. Patterson and Hugh Cowie Williams, Numerical sieving devices: their history and some applications, Nieuw Arch. Wisk.(4), 13(1995) 113–139; MR 99m: 1 1082.

    Google Scholar 

  • James K. McKee, Speeding Fermat’s factoring method, Math. Comput., 68(1999) 1729–1737; MR 2000b: 11138.

    Google Scholar 

  • G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13(1976) 300–317; MR 58 #470ab.

    Google Scholar 

  • Peter Lawrence Montgomery, An FFT extension of the elliptic curve method of factorization, PhD dissertation, UCLA, 1992.

    Google Scholar 

  • Siguna Müller, A probable prime test with very high confidence for n = 3 mod 4, J. Cryptology, 16 (2003) 117–139.

    MathSciNet  MATH  Google Scholar 

  • J. M. Pollard, Theorems on factoring and primality testing, Proc. Cambridge Philos. Soc., 76(1974) 521–528; MR 50 #6992.

    Google Scholar 

  • J. M. Pollard, A Monte Carlo method for factorization, BIT,15(1975) 331–334; MR 52 #13611.

    Google Scholar 

  • Carl Pomerance, Recent developments in primality testing, Math. Intelligencer, 3(1980/81) 97–105.

    Google Scholar 

  • Carl Pomerance, Notes on Primality Testing and Factoring, MAA Notes 4(1984) Math. Assoc. of America, Washington DC.

    Google Scholar 

  • Carl Pomerance (editor), Cryptology and Computational Number Theory, Proc. Symp. Appl. Math., 42 Amer. Math. Soc., Providence, 1990; MR 91k: 1 1113.

    Google Scholar 

  • Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  • Hans Riesel, Prime Numbers and Computer Methods for Factorization,2nd ed, Birkhäuser, Boston, 1994; MR 95h:11142.

    Google Scholar 

  • Hans Riesel, Wie schnell kann man Zahlen in Faktoren zerlegen? Mitt. Math. Ges. Hamburg, 12 (1991) 253–260.

    MathSciNet  MATH  Google Scholar 

  • R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications A.C.M., Feb. 1978.

    Google Scholar 

  • Michael Rubinstein and Peter Sarnak, Chebyshev’s bias, Experimental Math., 3(1994) 173–197; MR 96d: 1 1099.

    Google Scholar 

  • A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arith.,4(1958) 185–208; erratum 5(1959) 259; MR 21 #4936; and see 7(1961) 1–8; MR 24 #A70.

    Google Scholar 

  • R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput.,6(1977) 84–85; erratum 7(1978) 118; MR 57 #5885.

    Google Scholar 

  • Michael Somos and Robert Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110(2003) 539–540; MR 2004c: 11007.

    Google Scholar 

  • Jonathan Sorenson, Counting the integers cyclotomic methods can factor, Comput. Sci. Tech. Report, 919, Univ. of Wisconsin, Madison, March 1990.

    Google Scholar 

  • Hugh Cowie Williams, Édouard Lucas and Primality Testing, Canad. Math. Soc. Monographs 22, Wiley, New York, 1998.

    Google Scholar 

  • H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comput., 30 (1976) 867–886.

    MathSciNet  MATH  Google Scholar 

  • Alberto Barajas and Rita Zuazua, A sieve for primes of the form n2+1, preprint, Williams60, Banff, May 2003.

    Google Scholar 

  • Chen Yong-Gao, Gabor Kun, Gabor Pete, Imre Z. Ruzsa and Adam Timar, Prime values of reducible polynmials II, Acta Arith., 04 (2002) 117–127.

    Google Scholar 

  • Cécile Dartyge, Le plus grand facteur de n2 + 1, où n est presque premier, Acta Arith., 76 (1996) 199–226.

    MathSciNet  Google Scholar 

  • Cécile Dartyge, Entiers de la forme n2 + 1 sans grand facteur premier, Acta Math. Hungar., 72 (1996) 1–34.

    MathSciNet  MATH  Google Scholar 

  • Cécile Dartyge, Greg Martin and Gérald Tenenbaum, Polynomial values free of large prime factors, Period. Math. Hungar., 43(2001) 111–119; MR 2002c: 11117.

    Google Scholar 

  • Etienne Fouvry and Henryk Iwaniek, Gaussian primes, Acta Arith., 79(1997) 249–287; MR 98a: 1 1120.

    Google Scholar 

  • John Friedlander and Henryk Iwaniec, The polynomial X2 + Y4 captures its primes. Ann. of Math.(2), 148(1998) 945–1040; MR 2000c: 1 1150a.

    Google Scholar 

  • Gilbert W. Fung and Hugh Cowie Williams, Quadratic polynomials which have a high density of prime values, Math. Comput., 55(1990) 345–353; MR 90j: 1 1090.

    Google Scholar 

  • Martin Gardner, The remarkable lore of prime numbers, Scientific Amer.,210 #3 (Mar. 1964) 120–128.

    Google Scholar 

  • G. H. Hardy and J. E. Littlewood, Some problems of ‘partitio numerorum’ III: on the expression of a number as a sum of primes, Acta Math., 44 (1923) 1–70.

    Google Scholar 

  • D. R. Heath-Brown, The Pyateckii-Sapiro prime number theorem, J. Number Theory, 16 (1983) 242–266.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc.(3) 64(1992) 265338.

    Google Scholar 

  • D. Roger Heath-Brown, Primes represented by x3+2y3, Acta Math., 186(2001) 1–84; MR 2002b: 11122.

    Google Scholar 

  • D. Roger Heath-Brown and B. Z. Moroz, Primes represented by binary cubic forms, Proc. London Math. Soc.(3), 84 (2002) 257–288.

    MathSciNet  Google Scholar 

  • Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math., 47(1978) 171–188; MR 58 #5553.

    Google Scholar 

  • M. J. Jacobson, Computational techniques in quadratic fields, M.Sc thesis, Univ. of Manitoba, 1995.

    Google Scholar 

  • Michael J. Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comput., 72(2003) 499–519; MR 2003k: 11146.

    Google Scholar 

  • G. A. Kolesnik, The distribution of primes in sequences of the form [ne], Mat. Zametki(2), 2 (1972) 117–128.

    MathSciNet  Google Scholar 

  • G. A. Kolesnik, Primes of the form [ne], Pacific J. Math. (2), 118 (1985) 437–447.

    MathSciNet  MATH  Google Scholar 

  • D. Leitmann, Abschätzung trigonometrischer Summen, J. reine angew. Math., 317 (1980) 209–219.

    MathSciNet  MATH  Google Scholar 

  • D. Leitmann, Durchschnitte von Pjateckij-Shapiro-Folgen, Monatsh. Math., 94 (1982) 33–44.

    MathSciNet  MATH  Google Scholar 

  • H. Q. Liu and J. Rivat, On the Pyateckii-Sapiro prime number theorem, Bull. London Math. Soc., 24 (1992) 143–147.

    MathSciNet  MATH  Google Scholar 

  • Maurice Mignotte, P(x2 + 1) 17 si x 240, C. R. Acad. Sci. Paris Sér. I Math., 301(1985) 661–664; MR 87a: 1 1026.

    Google Scholar 

  • Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory, 12 (1980) 218–223.

    MathSciNet  MATH  Google Scholar 

  • I. I. Pyateckii-Sapiro, On the distribution of primes in sequences of the form [1(n)] (Russian), Mat. Sbornik N.S., 33(1953) 559–566; MR 15, 507.

    Google Scholar 

  • Joel Rivat and Patrick Sargos, Nombres premiers de la forme [ne], Canad. J. Math., 53(2001) 414–433: MR 2002a: 11107.

    Google Scholar 

  • J. Rivat and J. Wu, Prime numbers of the form [ne], Glasg. Math. J., 43(2001) 237–254; MR 2002k: 11154.

    Google Scholar 

  • Daniel Shanks, On the conjecture of Hardy and Littlewood concerning the number of primes of the form n2 + a, Math. Comput., 14 (1960) 321–332.

    MATH  Google Scholar 

  • W. Sierpinski, Les binômes x2 + n et les nombres premiers, Bull. Soc. Roy. Sci. Liège, 33 (1964) 259–260.

    MathSciNet  MATH  Google Scholar 

  • E. R. Sirota, Distribution of primes of the form p = [ne] = t d in arithmetic progressions (Russian), Zap. Nauchn. Semin. Leningrad Otdel. Mat. Inst. Steklova, 121(1983) 94–102; Zbl. 524. 10038.

    Google Scholar 

  • Panayiotis G. Tsangaris, A sieve for all primes of the form x2 + (x +1) 2, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.) bf25(1998) 39–53 (1999); MR 2001c: 11044.

    Google Scholar 

  • Takashi Agoh, Karl Dilcher and Ladislav Skula, Wilson quotients for composite moduli, Math. Comput., 67(1998) 843–861; MR 98h: 1 1003.

    Google Scholar 

  • I. O. Angell and H. J. Godwin, Some factorizations of 10’ + 1, Math. Comput., 28 (1974) 307–308.

    Google Scholar 

  • Chris K. Caldwell and Yves Gallot, On the primality of n! f 1 and 2 x 3 x 5 x... x p + 1, Math. Comput.,71(2002) 441–448; MR 2002g:11011.

    Google Scholar 

  • Alan Borning, Some results for k! + 1 and 2. 3. 5... p f 1, Math. Comput., 26 (1972) 567–570.

    MathSciNet  MATH  Google Scholar 

  • J. P. Buhler, R. E. Crandall and M. A. Penk, Primes of the form n! + 1 and 2.3.5... p f 1, Math. Comput.,38(1982) 639–643; corrigendum, Wilfrid Keller, 40(1983) 727; MR 83c:10006, 85b:11119.

    Google Scholar 

  • Chris K. Caldwell, On the primality of n! + 1 and 2. 3. 5... p f 1, Math. Comput.,64(1995) 889–890; MR 95g:11003.

    Google Scholar 

  • Chris K. Caldwell and Harvey Dubner, Primorial, factorial and multifactorial primes, Math. Spectrum,26(1993–94) 1–7.

    Google Scholar 

  • Chris Caldwell and Yves Gallot, On the primality of n! f 1 and 2 x 3 x 5 x . . . x p + 1, Math. Comput.,71(2002) 441–448.

    Google Scholar 

  • Harvey Dubner, Factorial and primorial primes, J. Recreational Math., 19 (1987) 197–203.

    MATH  Google Scholar 

  • Martin Gardner, Mathematical Games, Sci. Amer., 243#6(Dec. 1980 ) 18–28.

    Google Scholar 

  • Solomon W. Golomb, The evidence for Fortune’s conjecture, Math. Mag., 54 (1981) 209–210.

    MathSciNet  MATH  Google Scholar 

  • G. E. Hardy and M. V. Subbarao, A modified problem of Pillai and some related questions, Amer. Math. Monthly, 109 (2002) 554–559.

    MathSciNet  MATH  Google Scholar 

  • S. Kravitz and D. E. Penney, An extension of Trigg’s table, Math. Mag., 48 (1975) 92–96.

    MathSciNet  MATH  Google Scholar 

  • Le Mao-Hua and Chen Rong-Ji, A conjecture of Erd6s and Stewart concerning factorials, J. Math. (Wuhan) 23 (2003) 341–344.

    MathSciNet  MATH  Google Scholar 

  • S. S. Pillai, Question 1490, J. Indian Math. Soc., 18 (1930) 230.

    Google Scholar 

  • Mark Templer, On the primality of k! + 1 and 2 * 3 * 5 *... * p + 1, Math. Comput.,34(1980) 303–304.

    Google Scholar 

  • Miodrag Zivkovie, The number of primes Ez 1(-1)’-’i! is finite, Math. Comput., 68(1999) 403–409; MR 99c: 1 1163.

    Google Scholar 

  • Takashi Agoh, On Fermat and Wilson quotients, Exposition. Math., 14(1996) 145–170; MR 97e: 1 1008.

    Google Scholar 

  • Takashi Agoh, Karl Dilcher and Ladislav Skula, Fermat quotients for composite moduli, J. Number Theory, 66(1997) 29–50; MR 98h: 1 1002.

    Google Scholar 

  • R. C. Archibald, Scripta Math., 3 (1935) 117.

    Google Scholar 

  • A. O. L. Atkin and N. W. Rickert, Some factors of Fermat numbers, Abstracts Amer. Math. Soc., 1 (1980) 211.

    Google Scholar 

  • P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, The new Mersenne conjecture, Amer. Math. Monthly, 96(1989) 125–128; MR 90c: 1 1009.

    Google Scholar 

  • Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comput., 67(1998) 441–446; MR 98e: 1 1008.

    Google Scholar 

  • Wieb Bosma, Explicit primality criteria for h.2 k +1, Math. Comput., 61 (1993) 97–109.

    MathSciNet  MATH  Google Scholar 

  • R. P. Brent, Factorization of the eleventh Fermat number, Abstracts Amer. Math. Soc.,10(1989) 89T-11–73.

    Google Scholar 

  • R. P. Brent, R. E. Crandall, K. Dilcher and C. van Halewyn, Three new factors of Fermat numbers, Math. Comput., 69(2000) 1297–1304; MR 2000j: 11194.

    Google Scholar 

  • R. P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math. Comput., 36(1981) 627–630; MR 83h:10014.

    Google Scholar 

  • John Brillhart and G. D. Johnson, On the factors of certain Mersenne numbers, I, II Math. Comput.,14(1960) 365–369, 18(1964) 87–92; MR 23#A832, 28#2992.

    Google Scholar 

  • John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and Samuel S. Wagstaff, Factorizations of b’ + 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, Contemp. Math.,22. Amer. Math. Soc., Providence RI, 1983, 1988; MR 84k:10005, 90d:11009.

    Google Scholar 

  • John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comput.,50(1988) 251–260 and S1—S15.

    Google Scholar 

  • John Brillhart, J. Tonascia and P. Weinberger, On the Fermat quotient, in Computers in Number Theory, Academic Press, 1971, 213–222.

    Google Scholar 

  • Chris K. Caldwell and Yves Gallot, On the primality of n! f 1 and 2 x 3 x 5 x . . . x p f 1, Math. Comput., 71(2002) 441–448 (electronic).

    Google Scholar 

  • W. N. Colquitt and L. Welsh, A new Mersenne prime, Math. Comput., 56(1991) 867–870; MR 91h: 1 1006.

    Google Scholar 

  • Curtis Cooper and Manjit Parihar, On primes in the Fibonacci and Lucas sequences, J. Inst. Math. Comput. Sci., 15 (2002) 115–121.

    MathSciNet  MATH  Google Scholar 

  • R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comput., 66(1997) 433–449; MR 97c: 1 1004.

    Google Scholar 

  • Richard E. Crandall, J. Doenias, C. Norrie and Jeff Young, The twenty-second Fermat Number is composite, Math. Comput., 64(1995) 863–868; MR 95f: 1 1104.

    Google Scholar 

  • Richard E. Crandall, Ernst W. Mayer and Jason S. Papadopoulos, The twenty-fourth Fermat number is composite, Math. Comput., 72(2003) 1555–1572; MR 2004c: 11236.

    Google Scholar 

  • Karl Dilcher, Fermat numbers, Wieferich and Wilson primes: computations and generalizations, Public-key cryptography and computational number theory (Warsaw 2000) 29–48, de Gruyter, Berlin, 2001; MR 2002j: 11004.

    Google Scholar 

  • Harvey Dubner, Generalized Fermat numbers, J. Recreational Math.,18 (1985–86) 279–280.

    Google Scholar 

  • Harvey Dubner, Generalized repunit primes, Math. Comput., 61 (1993) 927–930.

    MathSciNet  MATH  Google Scholar 

  • Harvey Dubner, Repunit R49081 is a probable prime, Math. Comput., 71(2002) 833–835; MR 2002k: 11224.

    Google Scholar 

  • Harvey Dubner and Yves Gallot, Distribution of generalized Fermat prime numbers, Math. Comput., 71(2002) 825–832; MR 2002j: 11156.

    Google Scholar 

  • Harvey Dubner and Wilfrid Keller, Factors of generalized Fermat numbers, Math. Comput., 64 (1995) 397–405; MR 95c: 1010.

    MathSciNet  Google Scholar 

  • Harvey Dubner and Wilfrid Keller, New Fibonacci and Lucas primes, Math. Comput., 68(1999) 417–427, S1—S12; MR 99c11008.

    Google Scholar 

  • John R. Ehrman, The number of prime divisors of certain Mersenne numbers, Math. Comput., 21(1967) 700–704; MR 36#6368.

    Google Scholar 

  • Peter Fletcher, William Lindgren and Carl Pomerance, Symmetric and asymmetric primes, J. Number Theory, 58(1996) 89–99; MR 97c: 1 1007.

    Google Scholar 

  • Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. Comput., 18(1964) 93–97; MR 28#2990.

    Google Scholar 

  • Gary B. Gostin, New factors of Fermat numbers, Math. Comput., 64(1995) 393–395; MR 95c: 1 1151.

    Google Scholar 

  • Gary B. Gostin and Philip B. McLaughlin, Six new factors of Fermat numbers, Math. Comput., 38(1982) 645–649; MR 83c:10003.

    Google Scholar 

  • R. L. Graham, A Fibonacci-like sequence of composite numbers, Math. Mag., 37(1964) 322–324; Zbl 125, 21.

    Google Scholar 

  • Richard K. Guy, The strong law of small numbers, Amer. Math. Monthly 95(1988) 697–712; MR 90c:11002 (see also Math. Mag., 63(1990) 3–20; MR 91a: 1 1001.

    Google Scholar 

  • Kazuyuki Hatada, Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at 2 — p, Comment. Math. Univ. St. Paul. 36(1987), no. 1, 41–51; MR 88i: 1 1085.

    Google Scholar 

  • G. L. Honaker and Chris K. Caldwell, Palindromic prime pyramids, J. Recreational Math., 30(1999–2000) 169–176.

    Google Scholar 

  • A. Grytczuk, M. Wôjtowicz and Florian Luca, Another note on the greatest prime factors of Fermat numbers, Southeast Asian Bull. Math., 25(2001) 111115; MR 2002g: 11008.

    Google Scholar 

  • Wilfrid Keller, Factors of Fermat numbers and large primes of the form k.2n + 1, Math. Comput., 41(1983) 661–673; MR 85b: 1 1117.

    Google Scholar 

  • Wilfrid Keller, New factors of Fermat numbers, Abstracts Amer. Math. Soc., 5 (1984) 391

    Google Scholar 

  • Wilfrid Keller, The 17th prime of the form 5.2’ + 1, Abstracts Amer. Math. Soc., 6 (1985) 121.

    Google Scholar 

  • Christoph Kirfel and Oystein J. Rodseth, On the primality of wh 3h + 1, Selected papers in honor of Helge Tverberg, Discrete Math., 241 (2001) 395–406.

    MathSciNet  MATH  Google Scholar 

  • Joshua Knauer and Jörg Richstein, The continuing search for Weiferich primes, Math. Comput., (2004)

    Google Scholar 

  • Donald E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag., 63(1990) 21–25; MR 91e: 1 1020.

    Google Scholar 

  • M. Kraitchik, Sphinx, 1931, 31.

    Google Scholar 

  • Michal Krfzek and Jan Chleboun, Is any composite Fermat number divisible by the factor 5h2’’1 + 1, Tatra Mt. Math. Publ., 11(1997) 17–21; MR 98j: 1 1003.

    Google Scholar 

  • Michal Kffzek and Lawrence Somer, A necessary and sufficient condition for the primality of Fermat numbers, Math. Bohem., 126(2001) 541–549; MR 2004a: 11004.

    Google Scholar 

  • D. H. Lehmer, Sphinx, 1931, 32, 164.

    Google Scholar 

  • D. H. Lehmer, On Fermat’s quotient, base two, Math. Comput., 36(1981) 289–290; MR 82e:10004.

    Google Scholar 

  • A. K. Lenstra, H. W. Lenstra, M. S. Manasse and J. M. Pollard, The factorization of the ninth Fermat number, Math. Comput., 61(1993) 319–349; MR 93k: 1 1116.

    Google Scholar 

  • J. C. P. Miller and D. J. Wheeler, Large prime numbers, Nature, 168 (1951) 838.

    Google Scholar 

  • Satya Mohit and M. Ram Murty, Wieferich primes and Hall’s conjecture, C.R. Math. Acad. Sci. Soc. Roy. Can., 20(1998) 29–32; MR 98m: 1 1004.

    Google Scholar 

  • Peter L. Montgomery, New solutions of aP - 1-1 mod p 2, Math. Comput., 61(1993) 361–363; MR 94d: 1 1003.

    Google Scholar 

  • Pieter Moree and Peter Stevenhagen, Prime divisors of the Lagarias sequence, J. Théor. Nombres Bordeaux, 13(2001) 241–251; MR 2002c: 11016.

    Google Scholar 

  • Thorkil Naur, New integer factorizations, Math. Comput., 41(1983) 687–695; MR 85c: 1 1123.

    Google Scholar 

  • Rudolf Ondrejka, Titanic primes with consecutive like digits, J. Recreational Math., 17(1984–85) 268–274.

    Google Scholar 

  • Pi Xin-Ming, Generalized Fermat primes for b 2000, m 10, J. Math. (Wuhan) 22(2002) 91–93; MR 2003a: 11008.

    Google Scholar 

  • Paulo Ribenboim, On square factors of terms of binary recurring sequences and the ABC conjecture, Publ. Math. Debrecen, 59(2001) 459–469; MR 2002i: 11033.

    Google Scholar 

  • Herman te Riele, Walter Lioen and Dik Winter, Factorization beyond the googol with MPQS on a single computer, CWI Quarterly, 4 (1991) 69–72.

    MathSciNet  MATH  Google Scholar 

  • Hans Riesel Si Anders Bjorn, Generalized Fermat numbers, in Mathematics of Computation 1943–1993, Proc. Symp. Appl. Math.,48(1994) 583–587; MR 95j:11006.

    Google Scholar 

  • Raphael M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc., 5(1954) 842–846; MR 16, 335.

    Google Scholar 

  • A. Rotkiewicz, Note on the diophantine equation 1 + x + x2 +… + xn = y nz, Elem. Math., 42 (1987) 76.

    MathSciNet  MATH  Google Scholar 

  • Daniel Shanks and Sidney Kravitz, On the distribution of Mersenne divisors, Math. Comput., 21(1967) 97–100; MR 36:#3717.

    Google Scholar 

  • Hiromi Suyama, Searching for prime factors of Fermat numbers with a microcomputer (Japanese) bit, 13(1981) 240–245; MR 82c:10012.

    Google Scholar 

  • Hiromi Suyama, Some new factors for numbers of the form 2n±1, 82T-10–230 Abstracts Amer. Math. Soc., 3(1982) 257; IV, 5 (1984) 471.

    Google Scholar 

  • Hiromi Suyama, The cofactor of F15 is composite, 84T-10–299 Abstracts Amer. Math. Soc., 5 (1984) 271.

    Google Scholar 

  • Paul M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comput., 64(1995) 869–888; II J. Théorie des Nombres de Bordeaux, 8(1996) 251–274; III Math. Proc. Cambridge Philos. Soc., 123(1998) 407–419; MR 95f:11022, 98h: 11037, 99b: 1 1027.

    Google Scholar 

  • Samuel S. Wagstaff, Divisors of Mersenne numbers, Math. Comput., 40(1983) 385–397; MR 84j:10052.

    Google Scholar 

  • Samuel S. Wagstaff, The period of the Bell exponential integers modulo a prime, in Math. Comput. 1943–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math., 48(1994) 595–598; MR 95m: 1 1030.

    Google Scholar 

  • H. C. Williams, The primality of certain integers of the form 2Arn - 1, Acta Arith., 39(1981) 7–17; MR 84h: 10012.

    Google Scholar 

  • H. C. Williams, How was F6 factored? Math. Comput., 61 (1993) 463–474.

    MATH  Google Scholar 

  • Samuel Yates, Titanic primes, J. Recreational Math.,16(1983–84) 265–267.

    Google Scholar 

  • Samuel Yates, Sinkers of the Titanics, J. Recreational Math.,17(1984–85) 268–274.

    Google Scholar 

  • Samuel Yates, Tracking Titanics, in The Lighter Side of Mathematics, Proc. Strens Mem. Conf., Calgary 1986, Math. Assoc. of America, Washington DC, Spectrum series, 1993, 349–356.

    Google Scholar 

  • Jeff Young, Large primes and Fermat factors, Math. Comput., 67(1998) 17351738; MR 99a: 1 1010.

    Google Scholar 

  • Jeff Young and Duncan Buell, The twentieth Fermat number is composite, Math. Comput., 50 (1988) 261–263.

    MathSciNet  MATH  Google Scholar 

  • Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, in Math. Comput. 1943–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math., (1994) -.

    Google Scholar 

  • Carter Bays and Richard H. Hudson, The appearance of tens of billions of integers x with 7124,13 (x) 7124,1(x) in the vicinity of 1012, J. reine angew. Math.,299/300(1978) 234–237; MR 57 #12418.

    Google Scholar 

  • Carter Bays and Richard H. Hudson, Details of the first region of integers x with 713,2(x) 713,1(x), Math. Comput.,32(1978) 571–576; MR 57 #16175.

    Google Scholar 

  • Carter Bays and Richard H. Hudson, Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 1012, Internat. J. Math. Sci., 2(1979) 111–119; MR 80h: 10003.

    Google Scholar 

  • Carter Bays, Kevin Ford, Richard H. Hudson and Michael Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev’s bias, J. Number Theory, 87(2001) 54–76; MR 2001m: 11148.

    Google Scholar 

  • P. L. Chebyshev, Lettre de M. le Professeur Tschébychev à M. Fuss sur un nouveaux Théorème relatif aux nombres premiers contenus dans les formes 4n+1 et 4n + 3, Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg, 11 (1853) 208.

    Google Scholar 

  • Chen Jing-Run, On the least prime in an arithmetical progression, Sci. Sinica,14(1965) 1868–1871; MR 32 #5611.

    Google Scholar 

  • Chen Jing-Run, On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet’s L-functions, Sci. Sinica,20(1977) 529–562; MR 57 #16227.

    Google Scholar 

  • Chen Jing-Run, On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s L-functions IT, Sci. Sinica, 22(1979) 859–889; MR 80k: 10042.

    Google Scholar 

  • Chen Jing-Run and Liu Jian-Min, On the least prime in an arithmetic progression III, IV, Sci. China Ser. A,32(1989) 654–673, 792–807; MR 91h:11090ab.

    Google Scholar 

  • Andrey Feuerverger and Greg Martin, Biases in the Shanks-Rényi prime number race, Experiment. Math.,9(2000) 535–570; 2002d:11111.

    Google Scholar 

  • K. Ford and R. H. Hudson, Sign changes in 7rq,a(x) — 7 9,b(x), Acta Arith., 100(2001) 297–314; MR 2003a: 11121.

    Google Scholar 

  • Kevin Ford and Sergei Konyagin, The prime number race and zeros of L-functions off the critical line, Duke Math. J., 113(2002) 313–330; MR 2003i: 11135.

    Google Scholar 

  • S. Graham, On Linnik’s constant, Acta Arith., 39(1981) 163–179; MR 83d: 10050.

    Google Scholar 

  • Andrew Granville and Carl Pomerance, On the least prime in certain arithmetic progressions, J. London Math. Soc.(2), 41(1990) 193–200; MR 91i: 1 1119.

    Google Scholar 

  • D. R. Heath-Brown, Siegel zeros and the least prime in an arithmetic progression, Quart. J. Math. Oxford Ser. (2), 41(1990) 405–418; MR 91m: 1 1073.

    Google Scholar 

  • D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression, Proc. London Math, Soc.(3), 64(1992) 265338; MR 93a: 1 1075.

    Google Scholar 

  • Richard H. Hudson, A common combinatorial principle underlies Riemann’s formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory I, J. reine angew. Math., 313 (1980) 133–150.

    MathSciNet  MATH  Google Scholar 

  • Richard H. Hudson, Averaging effects on irregularities in the distribution of primes in arithmetic progressions, Math. Comput., 44(1985) 561–571; MR 86h: 1 1064.

    Google Scholar 

  • Richard H. Hudson and Alfred Brauer, On the exact number of primes in the arithmetic progressions 4n ± 1 and 6n ± 1, J. reine angew. Math.,291(1977) 23–29; MR 56 #283.

    Google Scholar 

  • Matti Jutila, A new estimate for Linnik’s constant, Ann. Acad. Sci. Fenn. Ser. A I No. 471 (1970), 8pp.; MR 42 #5939.

    Google Scholar 

  • Matti Jutila, On Linnik’s constant, Math. Scand., 41(1977) 45–62; MR 57 #16230.

    Google Scholar 

  • Jerzy Kaczorowski, A contribution to the Shanks-Rényi race problem, Quart. J. Math. Oxford Ser. (2) 44(1993) 451–458; MR 94m: 1 1105.

    Google Scholar 

  • Jerzy Kaczorowski, On the Shanks—Rényi race problem mod 5, J. Number Theory 50(1995) 106–118; MR 94m: 1 1105.

    Google Scholar 

  • Jerzy Kaczorowski, On the distribution of primes (mod 4), Analysis, 15(1995) 159–171; MR 96h:11095.

    Google Scholar 

  • Jerzy Kaczorowski, On the Shanks—Rényi race problem, Acta Arith., 74(1996) 31–46; MR 96k:11113.

    Google Scholar 

  • S. Knapowski and P. Turân, Über einige Fragen der vergleichenden Primzahltheorie, Number Theory and Analysis, Plenum Press, New York, 1969, 157–171.

    Google Scholar 

  • S. Knapowski and P. Turân, On prime numbers - 1 resp. 3 mod 4, Number Theory and Algebra,Academic Press, New York, 1977, 157–165; MR 57 #5926.

    Google Scholar 

  • John Leech, Note on the distribution of prime numbers, J. London Math. Soc., 32 (1957) 56–58.

    MathSciNet  MATH  Google Scholar 

  • U. V. Linnik, On the least prime in an arithmetic progression I. The basic theorem. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S.,15(57)(1944) 139–178, 347–368; MR 6, 260bc.

    Google Scholar 

  • J. E. Littlewood, Distribution des nombres premiers, C.R. Acad. Sci. Paris, 158 (1914) 1869–1872.

    MATH  Google Scholar 

  • Greg Martin, Asymmetries in the Shanks-Rényi prime number race, Number theory for the millenium, II (Urbana IL, 2000) 403–415, AKPeters, Natick MA,2002; MR 2004b: 11134.

    Google Scholar 

  • Pieter Moree, Chebyshev’s bias for composite numbers, Math. Comput., 73 (2004) 425–449.

    MathSciNet  MATH  Google Scholar 

  • Pan Cheng-Tung, On the least prime in an arithmetic progression, Sci. Record (N.S.) 1(1957) 311–313; MR 21 #4140.

    Google Scholar 

  • Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory, 12(1980) 218–223; MR 81m: 10081.

    Google Scholar 

  • K. Prachar, Über die kleinste Primzahl einer arithmetischen Reihe, J. reine angew. Math.,206(1961) 3–4; MR 23 #A2399; and see Andrzej Schinzel, Remark on the paper of K. Prachar, 210(1962) 121–122; MR 27 #118.

    Google Scholar 

  • Imre Z. Ruzsa, Consecutive primes modulo 4, Indag. Math. (N.S.), 12 (2001) 489–503.

    MathSciNet  MATH  Google Scholar 

  • Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput., 13 (1959) 272–284.

    MathSciNet  MATH  Google Scholar 

  • Wang Wei3, On the least prime in an arithmetic progression, Acta Math. Sinica(N.S.), 7(1991) 279–289; MR 93c: 1 1073.

    Google Scholar 

  • P. D. T. A. Elliott and H. Halberstam, The least prime in an arithmetic progression, in Studies in Pure Mathematics (Presented to Richard Rado),Academic Press, London, 1971, 59–61; MR 42 #7609.

    Google Scholar 

  • Christian Elsholtz, Triples of primes in arithmetic progressions, Q. J. Math., 53 (2002) 393–395.

    MathSciNet  MATH  Google Scholar 

  • P. Erdös and P. Turân, On certain sequences of integers, J. London Math. Soc., 11 (1936) 261–264.

    Google Scholar 

  • John B. Friedlander and Henryk Iwaniec, Exceptional characters and prime numbers in arithmetic progressions, Int. Math. Res. Not., 2003 no. 37, 2033–2050.

    MathSciNet  Google Scholar 

  • J. Gerver, The sum of the reciprocals of a set of integers with no arithmetic progression of k terms, Proc. Amer. Math. Soc., 62 (1977) 211–214.

    MathSciNet  MATH  Google Scholar 

  • Joseph L. Gerver and L. Thomas Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comput., 33 (1979) 1353–1359.

    MathSciNet  MATH  Google Scholar 

  • V. A. Golubev, Faktorisation der Zahlen der Form x3 ± 4x2 + 3x ± 1, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969 184–191 (see also 191–194; 297–301; 1970, 106–112; 1972, 19–20, 178–179 ).

    Google Scholar 

  • Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progression, April 2004 preprint.

    Google Scholar 

  • Emil Grosswald, Long arithmetic progressions that consist only of primes and almost primes, Notices Amer. Math. Soc., 26 (1979) A451.

    Google Scholar 

  • Emil Grosswald, Arithmetic progressions of arbitrary length and consisting only of primes and almost primes, J. reine angew. Math., 317 (1980) 200–208.

    MathSciNet  MATH  Google Scholar 

  • Emil Grosswald, Arithmetic progressions that consist only of primes, J. Number Theory, 14 (1982) 9–31.

    MathSciNet  MATH  Google Scholar 

  • Emil Grosswald and Peter Hagis, Arithmetic progressions consisting only of primes, Math. Comput., 33(1979) 1343–1352; MR 80k:10054.

    Google Scholar 

  • H. Halberstam, D. R. Heath-Brown and H.-E. Richert, On almost-primes in short intervals, in Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, 1981, 69–101; MR 83a: 10075.

    Google Scholar 

  • D. R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc.,83(1978) 357–375; MR 58 #10789.

    Google Scholar 

  • D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression, J. London Math. Soc., (2) 23 (1981) 396–414.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, Siegel zeros and the least prime in an arithmetic progression, Quart. J. Math. Oxford Ser. (2), 41(1990) 405–418; MR 91m: 1 1073.

    Google Scholar 

  • D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc.(3), 64(1992) 265338; MR 93a: 1 1075.

    Google Scholar 

  • Edgar Karst, 12–16 primes in arithmetical progression, J. Recreational Math., 2 (1969) 214–215.

    Google Scholar 

  • Edgar Karst, Lists of ten or more primes in arithmetical progression, Scripta Math., 28 (1970) 313–317.

    MATH  Google Scholar 

  • Edgar Karst and S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. KI.,1972, 19–20 (see also 178–179).

    Google Scholar 

  • A. Kumchev, The difference between consecutive primes in an arithmetic progression, Q. J. Math., 53 (2002) 479–501.

    MathSciNet  MATH  Google Scholar 

  • U. V. Linnik, On the least prime in an arithmetic progression, I. The basic theorem, Rec. Math. [Mat. Sbornik] N.S.,15(57)(1944) 139–178; II. The Deuring-Heilbronn phenomenon, 347–368; MR 6, 260bc.

    Google Scholar 

  • Carl Pomerance, The prime number graph, Math. Comput., 33(1979) 399408; MR 80d: 10013.

    Google Scholar 

  • Paul A. Pritchard, Andrew Moran and Anthony Thyssen, Twenty-two primes in arithmetic progression, Math. Comput., 64(1995) 1337–1339; MR 95j: 1 1003.

    Google Scholar 

  • Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comput.,65(1996) 397–425; MR 97a:11144.

    Google Scholar 

  • W. Sierpinski, Remarque sur les progressions arithmétiques, Colloq. Math., 3 (1955) 44–49.

    MathSciNet  Google Scholar 

  • Sol Weintraub, Primes in arithmetic progression, BIT 17 (1977) 239–243.

    MathSciNet  MATH  Google Scholar 

  • K. Zarankiewicz, Problem 117, Colloq. Math.,3(1955) 46, 73.

    Google Scholar 

  • S. Chowla, There exists an infinity of 3-combinations of primes in A.P., Proc. Lahore Philos. Soc., 6 no. 2(1944) 15–16; MR 7, 243.

    Google Scholar 

  • J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Annalen, 116(1939) 1–50; Zbl. 19, 196.

    Google Scholar 

  • H. Dubner, T. Forbes, N. Lygeros, M. Mizony, H. Nelson and P. Zimmermann, Ten consecutive primes in arithmetic progression. Math. Comput. 71(2002) 1323–1328; MR 2003d: 11137.

    Google Scholar 

  • H. Dubner and H. Nelson, Seven consecutive primes in arithmetic progression, Math. Comput., 66(1997) 1743–1749; MR 98a: 1 1122.

    Google Scholar 

  • P. Erdös and A. Rényi, Some problems and results on consecutive primes, Simon Stevin, 27(1950) 115–125; MR 11, 644.

    Google Scholar 

  • M. F. Jones, M. Lal and W. J. Blundon, Statistics on certain large primes, Math. Comput.,21(1967) 103–107; MR 36 #3707.

    Google Scholar 

  • L. J. Lander and T. R. Parkin, Consecutive primes in arithmetic progression, Math. Comput., 21 (1967) 489.

    MATH  Google Scholar 

  • H. L. Nelson, There is a better sequence, J. Recreational Math., 8 (1975) 39–43.

    Google Scholar 

  • S. Weintraub, Consectutive primes in arithmetic progression, J. Recreational Math., 25 (1993) 169–171.

    MATH  Google Scholar 

  • Takashi Agoh, On Sophie Germain primes, Tatra Mt. Math. Publ., 20(2000) 65–73; MR 2002d: 11008.

    Google Scholar 

  • Harvey Dubner, Large Sophie Germain primes, Math. Comput., 65(1996) 393–396; MR 96d: 1 1008.

    Google Scholar 

  • Claude Lalout and Jean Meeus, Nearly-doubled primes, J. Recreational Math.,13 (1980/81) 30–35.

    Google Scholar 

  • D. H. Lehmer, Tests for primality by the converse of Fermat’s theorem, Bull. Amer. Math. Soc., 33 (1927) 327–340.

    MathSciNet  MATH  Google Scholar 

  • D. H. Lehmer, On certain chains of primes, Proc. London Math. Soc., 14A (Littlewood 80 volume, 1965 ) 183–186.

    Google Scholar 

  • Günter Löh, Long chains of nearly doubled primes, Math. Comput., 53(1989) 751–759; MR 90e: 1 1015.

    Google Scholar 

  • Edlyn Teske and Hugh C. Williams, A note on Shanks’s chains of primes, Algorithmic number theory (Leiden, 2000), Springer Lecture Notes in Comput. Sci. 1838(2000) 563–580; MR 2002k: 11228.

    Google Scholar 

  • Danilo Bazzanella, Primes in almost all short intervals, Boll. Un. Mat. Ital.(7), 9(1995) 233–249; MR99c:11089.

    Google Scholar 

  • Richard Blecksmith, Paul Erdôs and J. L. Selfridge, Cluster primes, Amer. Math. Monthly, 106(1999) 43–48; MR 2000a: 11126.

    Google Scholar 

  • E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A, 293(1966)1–18; MR 33 #7314.

    Google Scholar 

  • Richard P. Brent, The first occurrence of large gaps between successive primes, Math. Comput., 27 (1973) 959–963; MR 48 #8360; (and see Math. Comput., 35 (1980) 1435–1436.

    MATH  Google Scholar 

  • Richard P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comput., 29 (1975) 43–56.

    MATH  Google Scholar 

  • V. Brun, Le crible d’Eratosthène et le théorème de Goldbach, C. R. Acad. Sci. Paris, 168 (1919) 544–546.

    MATH  Google Scholar 

  • J. H. Cadwell, Large intervals between consecutive primes, Math. Comput., 25 (1971) 909–913.

    MathSciNet  MATH  Google Scholar 

  • Cai Ying-Chun and Lu Ming-Gao, On the upper bound for 7r2(x), Acta Arith., 110 (2003) 275–298.

    MathSciNet  Google Scholar 

  • Chen Jing-Run, On the distribution of almost primes in an interval II, Sci. Sinica, 22(1979) 253–275; Zbl., 408.10030.

    Google Scholar 

  • Chen Jing-Run and Wang Tian-Ze, Acta Math. Sinica, 32(1989) 712–718; MR 91e:11108.

    Google Scholar 

  • Chen Jing-Run and Wang Tian-Ze, On distribution of primes in an arithmetical progression, Sci. China Ser. A, 33(1990) 397–408; MR 91k: 1 1078.

    Google Scholar 

  • H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith., 2 (1937) 23–46.

    Google Scholar 

  • Pamela A. Cutter, Finding prime pairs with particular gaps, Math. Comput., 70(2001) 1737–1744 (electronic); MR 2002c: 11174.

    Google Scholar 

  • TamAs Dénes, Estimation of the number of twin primes by application of the complementary prime sieve, Pure Math. Appl., 13(2002) 325–331; MR 2003m: 11153.

    Google Scholar 

  • Christian Elsholtz, On cluster primes, Acta Arith., 109(2003) 281–284; MR 2004c:11169.

    Google Scholar 

  • Paul Erdös and Melvyn B. Nathanson, On the sums of the reciprocals of the differences between consecutive primes, Number Theory (New York, 1991–1995, Springer, New York, 1996, 97–101; MR 97h: 1 1094.

    Google Scholar 

  • Anthony D. Forbes, A large pair of twin primes, Math. Comput., 66(1997)451455; MR 99c: 1 1111.

    Google Scholar 

  • Etienne Fouvry, in Analytic Number Theory (Tokyo 1988) 65–85, Lecture Notes in Math., 1434, Springer, Berlin, 1990; MR 91g:11104. É.

    Google Scholar 

  • Fouvry and F. Grupp, On the switching principle in sieve theory, J. reine angew. Math., 370(1986) 101–126; MR 87j: 1 1092.

    Google Scholar 

  • J. B. Friedlander and J. C. Lagarias, On the distribution in short intervals of integers having no large prime factor, J. Number Theory, 25 (1987) 249–273.

    MathSciNet  MATH  Google Scholar 

  • J. W. L. Glaisher, On long successions of composite numbers, Messenger of Math., 7(1877) 102–106, 171–176.

    Google Scholar 

  • D. A. Goldston, On Bombieri and Davenport’s theorem concerning small gaps between primes, Mathematika, 39(1992) 10–17; MR 93h: 1 1102.

    Google Scholar 

  • Glyn Harman, Short intervals containing numbers without large prime factors, Math. Proc. Cambridge Philos. Soc., 109(1991) 1–5; MR 91h: 1 1093.

    Google Scholar 

  • Jan Kristian Haugland, Large prime-free intervals by elementary methods, Normat, 39 (1991) 76–77.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, The differences between consecutive primes III, J. London Math. Soc.(2) 20(1979) 177–178; MR 81f:10055.

    Google Scholar 

  • Y. K. Huen, The twin prime problem revisited, Internat. J. Math. Ed. Sci. Tech., 28 (1997) 825–834.

    MathSciNet  Google Scholar 

  • Martin Huxley, An application of the Fouvey-Iwaniec theorem, Acta Arith., 43 (1984) 441–443.

    MathSciNet  MATH  Google Scholar 

  • Karl-Heinz Indlekofer and Antal Jârai, Largest known twin primes, Math. Comput., 65(1996) 427–428; MR 96d: 1 1009.

    Google Scholar 

  • Karl-Heinz Indlekofer and Antal Jârai, Largest known twin primes and Sophie Germain primes, Math. Comput., 68(1999) 1317–1324; MR 99k: 1 1013.

    Google Scholar 

  • H. Iwaniec and M. Laborde, P2 in short intervals, Ann. Inst. Fourier(Grenoble), 31(1981) 37–56; MR 83e: 10061.

    Google Scholar 

  • Jia Chao-Hua, Three primes theorem in a short interval VI (Chinese), Acta Math. Sinica, 34(1991) 832–850; MR 93h: 1 1104.

    Google Scholar 

  • Jia Chao-Hua, Difference between consecutive primes, Sci. China Ser. A, 38(1995) 1163–1186; MR 99m: 1 1081.

    Google Scholar 

  • Jia Chao-Hua, Almost all short intervals containing prime numbers, Acta Arith., 76(1996) 21–84; MR 97e:11110.

    Google Scholar 

  • Li Hong-Ze, Almost primes in short intervals, Sci. China Ser. A, 37(1994) 1428–1441; MR 96e: 1 1116.

    Google Scholar 

  • Li Hong-Ze, Primes in short intervals, Math. Proc. Cambridge Philos. Soc., 122(1997) 193–205; MR 98e: 1 1103.

    Google Scholar 

  • Liu Hong-Quan, On the prime twins problem, Sci. China Ser. A, 33(1990) 281–298; MR 91i: 1 1125.

    Google Scholar 

  • Liu Hong-Quan, Almost primes in short intervals, J. Number Theory, 57(1996) 303–302; MR 97c: 1 1092.

    Google Scholar 

  • Lou Shi-Tuo and Qi Yao, Upper bounds for primes in intervals (Chinese), Chinese Ann. Math. Ser. A, 10(1989) 255–262; MR 91d: 1 1112.

    Google Scholar 

  • Helmut Maier, Small differences between prime numbers, Michigan Math. J., 35 (1988) 323–344.

    MathSciNet  MATH  Google Scholar 

  • Helmut Maier, Primes in short intervals, Michigan Math. J., 32 (1985) 221–225.

    MathSciNet  MATH  Google Scholar 

  • Helmut Maier and Carl Pomerance, Unusually large gaps between consecutive primes, Théorie des nombres, (Quebec, PQ, 1987), de Gruyter, 1989, 625–632; MR 91a:11045: and see Trans. Amer. Math. Soc., 322(1990) 201–237; MR 91b: 1 1093.

    Google Scholar 

  • H. Maier and Cam Stewart, On intervals with few prime numbers, (2003 preprint)

    Google Scholar 

  • Hiroshi Mikawa, On prime twins in arithmetic progressions, Tsukuba J. Math., 16(1992) 377–387; MR 94e: 1 1101.

    Google Scholar 

  • C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986) 181–187.

    MathSciNet  Google Scholar 

  • Thomas R. Nicely, Enumeration to 1014 of the twin primes and Brun’s constant, Virginia J. Sci., 46(1995) 195–204; reviewed by Richard P. Brent, Math. Comput., 66(1997) 924–925; MR 97e: 1 1014.

    Google Scholar 

  • Thomas R. Nicely, New maximal prime gaps and first occurrences, Math. Comput., 68(1999) 1311–1315; MR 99i: 1 1004.

    Google Scholar 

  • Thomas R. Nicely, A new error analysis for Brun’s constant, Virginia J. Sci., 52(2001) 45–55; MR 2003d: 11184.

    Google Scholar 

  • Bertil Nyman and Thomas R. Nicely, New prime gaps between 1015 and 5x 1016, J. Integer Seq. 6(2003) Article 03.3.1, 6 pp. (electronic).

    Google Scholar 

  • Bodo K. Parady, Joel F. Smith and Sergio E. Zarantonello, Largest known twin primes, Math. Comput., 55(1990) 381–382; MR 90j: 1 1013.

    Google Scholar 

  • A. S. Peck, Differences between consecutive primes, Proc. London Math. Soc., (3) 76(1998) 33–69; MR 98i: 1 1071.

    Google Scholar 

  • G. Z. Pil’tyai, The magnitude of the difference between consecutive primes (Russian), Studies in number theory 4, Izdat. Saratov. Univ., Saratov, 1972, 73–79; MR 52 #13680.

    Google Scholar 

  • Janos Pintz, Very large gaps between consecutive primes, J. Number Theory, 63(1997) 286–301; MR 98c: 1 1092.

    Google Scholar 

  • Olivier Ramaré Si Yannick Saouter, Short effective intervals containing primes, J. Number Theory 98(2003) 10–33; MR 2004a:11095.

    Google Scholar 

  • S. Salerno and A. Vitolo, p+ P2 in short intervals, Note Mat., 13(1993) 309–328; MR 96c: 1 1109.

    Google Scholar 

  • Jszsef Sândor, Despre §irusi, serü si aplicatü in teoria numerelor prime (On sequences, series and applications in prime number theory. Romanian), Gaz. Mat. Perf. Met., 6 (1985) 38–48.

    MATH  Google Scholar 

  • Daniel Shanks, On maximal gaps between successive primes, Math. Comput., 18(1964) 646–651; MR 29 #4745.

    Google Scholar 

  • Daniel Shanks and John W. Wrench, Brun’s constant, Math. Comput., 28(1974) 293–299; corrigenda, ibid. 28(1974) 1183; MR 50 #4510.

    Google Scholar 

  • S. Uchiyama, On the difference between consecutive prime numbers, Acta Arith., 27 (1975) 153–157.

    MathSciNet  MATH  Google Scholar 

  • Nigel Watt, Short intervals almost all containing primes, Acta Arith., 72(1995) 131–167; MR 96f:11115.

    Google Scholar 

  • Wu Jiel, Sur la suite des nombres premiers jumeaux, Acta Arith. 55(1990) 365–394; MR 91j:11074.

    Google Scholar 

  • Wu Jiel, Thôrmes généralisés de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. Oxford Ser.(2), 44(1993) 109–128; MR 93m:11090.

    Google Scholar 

  • Jeff Young and Aaron Potler, First occurrence prime gaps, Math. Comput., 52 (1989) 221–224.

    MathSciNet  MATH  Google Scholar 

  • Yu Gang’, The differences between consecutive primes, Bull. London Math. Soc., 28(1996) 242–248; MR 97a: 1 1142.

    Google Scholar 

  • Alessandro Zaccagnini, A note on large gaps between consecutive primes in arithmetic progressions, J. Number Theory, 42 (1992) 100–102.

    MathSciNet  MATH  Google Scholar 

  • Antal Balog, The prime k-tuplets conjecture on the average, Analytic Number Theory (Allerton Park, IL, 1989 ), 47–75, Progr. Math., 85, Birkhäuser, Boston, 1990.

    Google Scholar 

  • Pierre Dusart, Sur la conjecture ir(x+y) x(x)-F-rr(y), Acta Arith., 102 (2002) 295–308.

    MathSciNet  MATH  Google Scholar 

  • Paul Erdös and Ian Richards, Density functions for prime and relatively prime numbers, Monatsh. Math. 83(1977) 99–112; Zbl. 355.10034.

    Google Scholar 

  • Anthony D. Forbes, Prime clusters and Cunningham chains, Mathy. Comput., 68(1999) 1739–1747; MR 99m: 1 1007.

    Google Scholar 

  • Anthony D. Forbes, Large prime triplets, Math. Spectrum 29(1996–97) 65.

    Google Scholar 

  • Anthony D. Forbes, Prime k-tuplets–15, M500, 156(July 1997 ) 14–15.

    Google Scholar 

  • John B. Friedlander and Andrew Granville, Limitations to the equi-distribution of primes I, IV, III, Ann. of Math.(2), 129(1989) 363–382; MR 90e:11125; Proc. Roy. Soc. London Ser. A, 435(1991) 197–204; MR 93g:11098; Compositio Math., 81 (1992) 19–32.

    MathSciNet  MATH  Google Scholar 

  • John B. Friedlander, Andrew Granville, Adolf Hildebrandt and Helmut Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc., 4(1991) 25–86; MR 92a: 1 1103.

    Google Scholar 

  • R. Garunkstis, On some inequalities concerning 7(x), Experiment. Math., 11(2002) 297–301; MR 2003k: 11143.

    Google Scholar 

  • D. R. Heath-Brown, Almost-prime k-tuples, Mathematika, 44 (1997) 245–266.

    MathSciNet  Google Scholar 

  • Douglas Hensley and Ian Richards, On the incompatibility of two conjectures concerning primes, Proc. Symp. Pure Math., (Analytic Number Theory, St. Louis, 1972 ) 24 123–127.

    Google Scholar 

  • H. Iwaniec, On the Brun-Titchmarsh theorem, J. Math. Soc. Japan, 34(1982) 95–123; MR 83a: 10082.

    Google Scholar 

  • John Leech, Groups of primes having maximum density, Math. Tables Aids Comput. 12(1958) 144–145; MR 20 #5163.

    Google Scholar 

  • H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20(1973) 119–134; MR 51 #10260.

    Google Scholar 

  • Laurentiu Panaitopol, On the inequality papy pay, Bull. Math. Soc. Sci. Math. Roumanie (N.S., 41 (89) (1998) 135–139.

    MathSciNet  MATH  Google Scholar 

  • Laurentiu Panaitopol, An inequality related to the Hardy-Littlewood conjecture, An. Univ. Bucuresti Mat., 49(2000) 163–166; MR 2003c: 11114.

    Google Scholar 

  • Laurentiu Panaitopol, Checking the Hardy-Littlewood conjecture in special cases, Rev. Roumaine Math. Pures Appl., 46(2001) 465–470; MR 2003e: 11098.

    Google Scholar 

  • Ian Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem, Bull. Amer. Math. Soc., 80 (1974) 419–438.

    MathSciNet  MATH  Google Scholar 

  • Herschel F. Smith, On a generalization of the prime pair problem, Math. Tables Aids Comput. 11(1957) 249–254; MR 20 #833.

    Google Scholar 

  • Warut Roonguthai, Large prime quadruplets, M500 153 (Dec.1996) 4–5.

    Google Scholar 

  • Charles W. Trigg, A large prime quadruplet, J. Recreational Math. 14 (1981/82) 167.

    Google Scholar 

  • Sheng-Gang Xie, The prime 4-tuplet problem (Chinese. English summary), Sichuan Daxue Xuebao, 26(1989) 168–171; MR 91f: 1 1066.

    Google Scholar 

  • R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Tables Aids Comput. 13(1959) 121–122; MR 21 #4943.

    Google Scholar 

  • Andrew M. Odlyzko, Iterated absolute values of differences of consecutive primes, Math. Comput., 61(1993) 373–380; MR 93k: 1 1119.

    Google Scholar 

  • F. Proth, Sur la série des nombres premiers, Nouv. Corresp. Math., 4 (1878) 236–240.

    Google Scholar 

  • P. Eras, On the difference of consecutive primes, Bull. Amer. Math. Soc., 54(1948) 885–889; MR 10, 235.

    Google Scholar 

  • P. Eras and P. Turân, On some new questions on the distribution ofprime numbers, Bull. Amer. Math. Soc., 54(1948) 371–378; MR 9, 498.

    Google Scholar 

  • Laurentiu Panaitopol, Erdös-Turân problem for prime numbers in arithmetic progression, Math. Rep, (Bucur.), 1(51)(1999) 595–599; MR 2002d: 11112.

    Google Scholar 

  • William Adams and Daniel Shanks, Strong primality tests that are not sufficient, Math. Comput., 39 (1982) 255–300.

    MathSciNet  MATH  Google Scholar 

  • Richard André-Jeannin, On the existence of even Fibonacci pseudoprimes with parameters P and Q, Fibonacci Quart., 34(1996) 75–78; MR 96m: 1 1013.

    Google Scholar 

  • F. Arnault, The Rabin-Monier theorem for Lucas pseudoprimes, Math. Comput., 66(1997) 869–881; MR 97f: 1 1009.

    Google Scholar 

  • Steven Arno, A note on Perrin pseudoprimes, Math. Comput., 56(1991) 371376. 371–376; MR 91k: 1 1011.

    Google Scholar 

  • N. G. W. H. Beeger, On even numbers m dividing 2’ — 2, Amer. Math. Monthly, 58(1951) 553–555; MR 13, 320.

    Google Scholar 

  • Jerzy Browkin, Some new kinds of pseudoprimes, Math. Comput., 73 (2004) 1031–1037.

    MathSciNet  Google Scholar 

  • Paul S. Bruckman, On the infinitude of Lucas pseudoprimes, Fibonacci Quart., 32 (1994) 153–154; MR 95c: 1 1011.

    Google Scholar 

  • Paul S. Bruckman, Lucas pseudoprimes are odd, Fibonacci Quart., 32 (1994) 155–157; MR 95c: 1 1012.

    Google Scholar 

  • Paul S. Bruckman, On a conjecture of Di Porto and Filipponi, Fibonacci Quart., 32(1994) 158–159; MR 95c: 1 1013.

    Google Scholar 

  • Paul S. Bruckman, Some interesting subsequences of the Fibonacci and Lucas pseudoprimes, Fibonacci Quart., 34(1996) 332–341; MR 97e: 1 1022.

    Google Scholar 

  • Bui Minh-Phong, On the distribution of Lucas and Lehmer pseudoprimes. Festscrift for the 50th birthday of Karl-Heinz Indlekofer, Ann. Univ. Sci. Budapest. Sect. Comput., 14(1994) 145–163; MR 96d: 1 1106.

    Google Scholar 

  • Walter Carlip, Eliot Jacobson and Lawrence Somer, Pseudoprimes, perfect numbers and a problem of Lehmer, Fibonacci Quart., 36(1998) 361–371; MR 99g: 1 1013.

    Google Scholar 

  • R. D. Carmichael, On composite numbers P which satisfy the Fermat congruence a1’-1 w 1 mod P, Amer. Math. Monthly, 19 (1912) 22–27.

    Google Scholar 

  • M. Cipolla, Sui numeri composti P the verificiano la congruenza di Fermat, aP-1 w 1 (mod P), Annali di Matematica, 9 (1904) 139–160.

    Google Scholar 

  • John H. Conway, Richard K. Guy, William A. Schneeberger and N. J. A. Sloane, The primary pretenders, Acta. Arith., 78(1997) 307–313; MR 197k: 1 1004.

    Google Scholar 

  • Adina Di Porto, Nonexistence of even Fibonacci pseudoprimes of the 1st kind, Fibonacci Quart., 31(1993) 173–177; MR94d:11007.

    Google Scholar 

  • L. A. G. Dresel, On pseudoprimes related to generalized Lucas sequences, Fibonacci Quart., 35(1997) 35–42; MR 98b: 1 1010.

    Google Scholar 

  • P. Erdös, On the converse of Fermat’s theorem, Amer. Math. Monthly, 56 (1949) 623–624; MR 11, 331.

    Google Scholar 

  • P. Erdös, On almost primes, Amer. Math. Monthly, 57(1950) 404–407; MR 12, 80.

    Google Scholar 

  • P. Erdös, P. Kiss and A. Sârközy, A lower bound for the counting function of Lucas pseudoprimes, Math. Comput., 51(1988) 259–279; MR 89e: 1 1011.

    Google Scholar 

  • P. Erdös and C. Pomerance, The number of false witnesses for a composite number, Math. Comput., 46(1986) 259–279; MR 87i: 1 1183.

    Google Scholar 

  • J. B. Friedlander, Shifted primes without large prime factors, in Number Theory and Applications, (Proc. NATO Adv. Study Inst., Banff, 1988 ), Kluwer, Dordrecht, 1989, 393–401;

    Google Scholar 

  • Horst W. Gerlach, On liars and witnesses in the strong pseudoprimality test, New Zealand J. Math., 24 (1995) 5–15.

    MathSciNet  MATH  Google Scholar 

  • Daniel M. Gordon and Carl Pomerance, The distribution of Lucas and elliptic pseudoprimes, Math. Comput., 57(1991) 825–838; MR 92h:11081; corrigendum 60(1993) 877; MR 93h: 1 1108.

    Google Scholar 

  • S. Gurak, Pseudoprimes for higher-order linear recurrence sequences, Math. Comput., 55 (1990) 783–813.

    MathSciNet  MATH  Google Scholar 

  • S. Gurak, On higher-order pseudoprimes of Lehmer type, Number Theory (Halifax NS, 1994) 215–227, CMS Conf. Proc., 15, Amer. Math. Soc., 1995; MR 96f: 1 1167.

    Google Scholar 

  • Hideji Ito, On elliptic pseudoprimes, Mem. College Ed. Akita Univ. Natur. Sci., 46(1994) 1–7; MR 95e:11009.

    Google Scholar 

  • Gerhard Jaeschke, On strong pseudoprimes to several bases, Math. Comput., 61(1993) 915–926; MR 94d: 1 1004.

    Google Scholar 

  • I. Joô, On generalized Lucas pseudoprimes, Acta Math. Hungar., 55 (1990) 315–322.

    MathSciNet  Google Scholar 

  • I. Joô and Phong Bui-Minh, On super Lehmer pseudoprimes, Studia Sci. Math. Hungar., 25(1990) 121–124; MR 92d: 1 1109.

    Google Scholar 

  • Kim Su-Hee and Carl Pomerance, The probability that a random probable prime is composite, Math. Comput., 53(1989) 721–741; MR 90e: 1 1190.

    Google Scholar 

  • Péter Kiss and Phong Bui-Minh, On a problem of A. Rotkiewicz, Math. Comput., 48(1987) 751–755; MR 88d: 1 1004.

    Google Scholar 

  • G. Kowol, On strong Dickson pseupoprimes, Appl. Algebra Engrg. Comm. Comput., 3(1992) 129–138; MR 96g: 1 1005.

    Google Scholar 

  • D. H. Lehmer, On the converse of Fermat’s theorem, Amer. Math. Monthly, 43(1936) 347–354; II 56(1949) 300–309; MR 10, 681.

    Google Scholar 

  • Rudolf Lidl, Winfried B. Müller and Alan Oswald, Some remarks on strong Fibonacci pseudoprimes, Appl. Algebra Engrg. Comm. Comput., 1(1990) 59–65; MR 95k: 1 1015.

    Google Scholar 

  • Andrzej Makowski, On a problem of Rotkiewicz on pseudoprime numbers, Elem. Math., 29 (1974) 13.

    Google Scholar 

  • A. Makowski and A. Rotkiewicz, On pseudoprime numbers of special form, Colloq. Math., 20(1969) 269–271; MR 39 #5458.

    Google Scholar 

  • Wayne L. McDaniel, Some pseudoprimes and related numbers having special forms, Math. Comput., 53(1989) 407–409; MR 89m: 1 1006.

    Google Scholar 

  • F. Morain, Pseudoprimes: a survey of recent results, Eurocode ’82, Springer Lecture Notes, 339(1993) 207–215; MR 95c: 1 1172.

    Google Scholar 

  • Siguna Müller, On strong Lucas pseudoprimes, Contributions to general algebra, 10 (Klagenfurt, 1997) 237–249, Heyn, Klagenfurt, 1998; MR 99k: 1 1008.

    Google Scholar 

  • Siguna Müller, A note on strong Dickson pseudoprimes, Appl. Algebra Engrg. Comm. Comput., 9(1998) 247–264; MR 99j: 1 1008.

    Google Scholar 

  • Winfried B. Müller and Alan Oswald, Generalized Fibonacci pseudoprimes and probablr primes, Applications of Fibonacci numbers, Vol.5 (St. Andrews, 1992), 459–464, Kluwer Acad. Publ.. Dordrecht, 1993; MR 95f: 1 1105.

    Google Scholar 

  • R. Perrin, Item 1484, L’Intermédiaire des mathématicians, 6(1899) 76–77; see also E. Malo, ibid., 7(1900) 312 and E. B. Escott, ibid., 8 (1901) 63–64.

    Google Scholar 

  • Richard G. E. Pinch, The pseudoprimes up to 1013, Algorithmic Number Theory (Leiden, 2000), Springer Lecture Notes in Comput. Sci., 1838(2000) 459–473; MR 2002g: 11177.

    Google Scholar 

  • Carl Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math., 26(1982) 4–9; MR 83h:10012.

    Google Scholar 

  • Carl Pomerance, On the distribution of pseudoprimes, Math. Comput., 37 (1981) 587–593; MR 83k:10009.

    Google Scholar 

  • Carl Pomerance, Two methods in elementary analytic number theory, in Number Theory and Applications, (Proc. NATO Adv. Study Inst., Banff, 1988), Kluwer, Dordrecht, 1989, 135–161;

    Google Scholar 

  • Carl Pomerance, John L. Selfridge and Samuel S. Wagstaff, The pseudoprimes to 25. 109, Math. Comput., 35(1980) 1003–1026; MR 82g:10030.

    Google Scholar 

  • A. Rotkiewicz, Pseudoprime Numbers and their Generalizations, Student Association of the Faculty of Sciences, Univ. of Novi Sad, 1972; MR 48 #8373; Zbl. 324. 10007.

    Google Scholar 

  • A. Rotkiewicz, Sur les diviseurs composés des nombres an — b’, Bull. Soc. Roy. Sci. Liège, 32(1963) 191–195; MR 26 #3645.

    Google Scholar 

  • A. Rotkiewicz, Sur les nombres pseudopremiers de la forme ax + b, Comptes Rendus Acad. Sci. Paris, 257(1963) 2601–2604; MR 29 #61.

    Google Scholar 

  • A. Rotkiewicz, Sur les formules donnant des nombres pseudopremiers, Colloq. Math. 12(1964) 69–72; MR 29 #3416.

    Google Scholar 

  • A. Rotkiewicz, Sur les nombres pseudopremiers de la forme nk + 1, Elern. Math., 21(1966) 32–33; MR 33 #112.

    Google Scholar 

  • A. Rotkiewicz, On Euler-Lehmer pseudoprimes and strong Lehmer pseudo-primes with parameters L, Q in arithmetic progressions, Math. Comput., 39(1982) 239–247; MR 83k:10004.

    Google Scholar 

  • A. Rotkiewicz, On the congruence 2n-2–1(mod n), Math. Comput., 43 (1984) 271–272; MR 85e: 1 1005.

    Google Scholar 

  • A. Rotkiewicz, On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith., 68(1994) 145–151; MR 96h: 1 1008.

    Google Scholar 

  • A. Rotkiewicz, Arithmetical progressions formed by k different Lehmer pseudoprimes, Rend. Circ. Mat. Palermo (2), 43(1994) 391–402; MR 96f: 1 1026.

    Google Scholar 

  • A. Rotkiewicz, On Lucas pseudoprimes of the form ax2 +bxy + cy2, Applications of Fibonacci numbers, Vol. 6 (Pullman WA 1994), 409–421, Kluwer Acad. Publ., Dordrecht 1996; MR9 10: 1 1001.

    Google Scholar 

  • A. Rotkiewicz, On Lucas pseudoprimes of the form ax2 + bxy + cy2, Applications of Fibonacci numbers, Vol. 6 (Pullman WA, 1994) 409–421, Kluwer Acad. Publ. Dordrecht, 1996; MR 97d: 1 1008.

    Google Scholar 

  • A. Rotkiewicz, On the theorem of Wojcik, Glasgow Math. J., 38(1996) 157–162; MR 97i: 1 1010.

    Google Scholar 

  • A. Rotkiewicz, On Lucas pseudoprimes of the form ax2 + bxy + cy2 in arithmetic progressions AX + B with a prescribed value of the Jacobi symbol, Acta Math. Inform. Univ. Ostraviensis, 10(2002) 103–109; MR 2003i: 11004.

    Google Scholar 

  • A. Rotkiewicz and K. Ziemak, On even pseudoprimes, Fibonacci Quart., 33 (1995) 123–125; MR 96c: 1 1005.

    Google Scholar 

  • Shen Mok-Kong, On the congruence 2n-k w 1(mod n), Math. Comput., 46(1986) 715–716; MR 87e: 1 1005.

    Google Scholar 

  • Lawrence Somer, On even Fibonacci pseudoprimes, Applications of Fibonacci numbers, 4(1990), Kluwer, 1991, 277–288; MR 94b: 1 1014.

    Google Scholar 

  • George Szekeres, Higher order pseudoprimes in primality testing, Combina-tories, Paul Erdfis is eighty, Vol.2 (Keszthely, 1993 ) 451–458, Bolyai Soc. Math. Stud., 2 Janos Bolyai Math. Soc., Budapest, 1996.

    Google Scholar 

  • K. Szymiczek, On prime numbers p, q and r such that pq, pr and qr are pseudoprimes, Colloq. Math., 13(1964–65) 259–263; MR 31 #4757.

    Google Scholar 

  • K. Szymiczek, On pseudoprime numbers which are products of distinct primes, Amer. Math. Monthly, 74(1967) 35–37; MR 34 #5746.

    Google Scholar 

  • S. S. Wagstaff, Pseudoprimes and a generalization of Artin’s conjecture, Acta Arith., 41(1982) 151–161; MR 83m: 10004.

    Google Scholar 

  • Masataka Yorinaga, Search for absolute pseudoprime numbers (Japanese), Siîgaku, 31 (1979) 374–376; MR 82c: 10008.

    Google Scholar 

  • Zhang Zhen-Xiang, Finding strong pseudoprimes to several bases, Math. Comput., 70(2001) 863–872; MR 2001g: 11009.

    Google Scholar 

  • Zhang Zhen-Xiang and Min Tang, Finding strong pseudoprimes to several bases, II, Math. Comput. 72(2003) 2085–2097; MR 2004c:11008.

    Google Scholar 

  • W. R. Alford and Jon Grantham, There are Carmichael numbers with many prime factors, (2003 preprint)

    Google Scholar 

  • W. Red Alford, Andrew Granville and Carl Pomerance, On the difficulty of finding reliable witnesses, in Algorithmic Number Theory (Ithaca, NY, 1994), 116, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994; MR 96d: 1 1136.

    Google Scholar 

  • W. Red Alford, Andrew Granville and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math.(2), 139(1994) 703–722; MR 95k: 1 1114.

    Google Scholar 

  • François Arnault, Constructing Carmichael numbers which are strong pseudo-primes to several bases, J. Symbolic Comput., 20(1995) 151–161; MR 96k: 1 1153.

    Google Scholar 

  • Robert Baillie and Samuel S. Wagstaff, Lucas pseudoprimes, Math. Comput., 35 (1980) 1391–1417.

    MathSciNet  MATH  Google Scholar 

  • Ramachandran Balasubramanian and S. V. Nagaraj, Density of Carmichael numbers with three prime factors, Math. Comput., 66(1997) 1705–1708; MR 98d: 1 1110.

    Google Scholar 

  • N. G. W. H. Beeger, On composite numbers n for which a„ _i = 1 mod n for every a prime to n, Scripta Math., 16 (1950) 133–135.

    MathSciNet  MATH  Google Scholar 

  • R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc., 16(1909–10) 232–238.

    Google Scholar 

  • Harvey Dubner, A new method for producing large Carmichael numbers, Math. Comput., 53(1989) 411–414; MR 89m: 1 1013.

    Google Scholar 

  • Harvey Dubner, Carmichael numbers and Egyptian fractions, Math. Japon., 43(1996) 411–419; MR 97d: 1 1011.

    Google Scholar 

  • Harvey Dubner, Carmichael numbers of the form (6m+1)(12m+1)(18m+1), J. Integer Seq., 5(2002) A02.2.1, 8pp. (electronic); MR 2003g: 11144.

    Google Scholar 

  • H. J. A. Duparc, On Carmichael numbers, Simon Stevin, 29(1952) 21–24; MR 14, 21f.

    Google Scholar 

  • P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, 4(1956) 201–206; MR 18, 18.

    Google Scholar 

  • Andrew Granville, Prime testing and Carmichael numbers, Notices Amer. Math. Soc., 39 (1992) 696–700.

    Google Scholar 

  • Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comput., 71(2002) 883–908; MR 2003d: 11148.

    Google Scholar 

  • D. Guillaume, Table de nombres de Carmichael inférieurs à 1012, preprint, May 1991

    Google Scholar 

  • D. Guillaume and F. Morain, Building Carmichael numbers with a large number of prime factors and generalization to other numbers, preprint June, 1992.

    Google Scholar 

  • Jay Roderick Hill, Large Carmichael numbers with three prime factors, Abstract 79T-A136, Notices Amer. Math. Soc., 26(1979) A-374.

    Google Scholar 

  • Gerhard Jaeschke, The Carmichael numbers to 1012, Math. Comput., 55 (1990) 383–389; MR 90m: 1 1018.

    Google Scholar 

  • I. Job and Phong Bui-Minh, On super Lehmer pseudoprimes, Studia Sci. Math. Hungar., 25 (1990) 121–124.

    MathSciNet  Google Scholar 

  • W. Keller, The Carmichael numbers to 1013, Abstracts Amer. Math. Soc., 9 (1988) 328–329.

    Google Scholar 

  • W. Knödel, Eine obere Schranke für die Anzahl der Carmichaelschen Zahlen kleiner als x, Arch. Math., 4(1953) 282–284; MR 15, 289 (and see Math. Nachr., 9 (1953) 343–350 ).

    MathSciNet  MATH  Google Scholar 

  • A. Korselt, Problème chinois, L’intermédiaire des math., 6 (1899) 142–143.

    Google Scholar 

  • D. H. Lehmer, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A, 21 (1976) 508–510.

    MathSciNet  MATH  Google Scholar 

  • G. Löh, Carmichael numbers with a large number of prime factors, Abstracts Amer. Math. Soc., 9(1988) 329; II (with W. Niebuhr) 10 (1989) 305.

    Google Scholar 

  • Günter Löh and Wolfgang Niebuhr, A new algorithm for constructing large Carmichael numbers, Math. Comput., 65(1996) 823–836; MR 96g: 1 1123.

    Google Scholar 

  • Frantisék Marko, A note on pseudoprimes with respect to abelian linear recurring sequence, Math. Slovaca, 46(1996) 173–176; MR 97k: 1 1009.

    Google Scholar 

  • Rex Matthews, Strong pseudoprimes and generalized Carmichael numbers, Finite fields: theory, applications and algorithms (Las Vegas NV 1993), 227–223, Contemp. Math., 168 Amer. Math. Soc., 1994; MR 95g: 1 1125.

    Google Scholar 

  • Siguna M. S. Müller, Carmichael numbers and Lucas tests, Finite fields: theory, applications and algorithms (Waterloo ON, 1997) 193–202, Contemp. Math., 225, Amer. Math. Soc., 1999; MR 99m: 1 1008.

    Google Scholar 

  • R. G. E. Pinch, The Carmichael numbers up to 1015, Math. Comput., 61 (1993) 381–391; MR 93m: 1 1137.

    Google Scholar 

  • A. J. van der Poorten and A. Rotkiewicz, On strong pseudoprimes in arithmetic progressions, J. Austral. Math. Soc. Ser. A, 29 (1980) 316–321.

    MathSciNet  MATH  Google Scholar 

  • S. S. Wagstaff, Large Carmichael numbers, Math. J. Okayama Univ., 22 (1980) 33–41; MR 82c:10007.

    Google Scholar 

  • H. C. Williams, On numbers analogous to Carmichael numbers, Canad. Math. Bull., 20 (1977) 133–143.

    MathSciNet  MATH  Google Scholar 

  • Dale Woods and Joel Huenemann, Larger Carmichael numbers, Comput. Math. Appl., 8(1982) 215–216; MR 83f:10017.

    Google Scholar 

  • Masataka Yorinaga, Numerical computation of Carmichael numbers, I, II, Math. J. Okayama Univ. 20(1978) 151–163, 21(1979) 183–205; MR 80d:10026, 80j:10002.

    Google Scholar 

  • Masataka Yorinaga, Carmichael numbers with many prime factors, Math. J. Okayama Univ., 22(1980) 169–184; MR 81m:10018.

    Google Scholar 

  • Zhang Ming-Zhi, A method for finding large Carmichael numbers, Sichuan Daxue Xuebao, 29(1992) 472–479; MR 93m:11009.

    Google Scholar 

  • Zhang Zhen-Xiang, A one-parameter quadratic-base version of the Baillie PSW probable prime test, Math. Comput., 71 (2002) 1699–1734.

    Google Scholar 

  • Zhu Wen-Yu, Carmichael numbers that are strong pseudoprimes to some bases, Sichuan Daxue Xuebao, 34 (1997) 269–275.

    MathSciNet  Google Scholar 

  • William W. Adams, Eric Liverance and Daniel Shanks, Infinitely many necessary and sufficient conditions for primality, Bull. Inst. Combin. Appl., 3(1991) 69–76; MR 90e: 1 1011.

    Google Scholar 

  • Takashi Agoh, On Giuga’s conjecture, Manuscripta Math., 87(1995) 501–510; MR 96f:11005.

    Google Scholar 

  • Takashi Agoh, Karl Dilcher and Ladislav Skula, Wilson quotients for composite moduli, Math. Comput., 67 (1998) 843–861.

    MathSciNet  MATH  Google Scholar 

  • Jesûs Almansa and Leonardo Prieto, New formulas for the nth prime, (spanish) Lect. Math., 15 (1994) 227–231.

    MathSciNet  MATH  Google Scholar 

  • A. R. Ansari, On prime representing function, Ganita, 2(1951) 81–82; MR 15, 11.

    Google Scholar 

  • R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith., 47(1986) 193–231; MR 88a: 1 1086.

    Google Scholar 

  • R. C. Baker and Glyn Harman, Numbers with a large prime factor, Acta Arith., 73(1995) 119–145; MR 97a: 1 1138.

    Google Scholar 

  • Thoger Bang, A function representing all prime numbers, Norsk Mat. Tidsskr., 34(1952) 117–118; MR 14, 621.

    Google Scholar 

  • V. I. Baranov and B. S. Stechkin, Extremal Combinatorial Problems and their Applications, Kluwer, 1993, Problem 2. 22.

    Google Scholar 

  • Paul T. Bateman and Harold G. Diamond, A hundred years of prime numbers, Amer. Math. Monthly, 103 (1996) 729–741.

    MathSciNet  MATH  Google Scholar 

  • Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comput. 16(1962) 363–367; MR 26 #6139.

    Google Scholar 

  • Christoph Baxa, Über Gandhis Primzahlformel, Elem. Math., 47(1992) 8284; MR 93h: 1 1007.

    Google Scholar 

  • E. Bedocchi, Nota ad una congettura sui numeri primi, Riv. Mat. Univ. Parma(4), 11 (1985) 229–236.

    MathSciNet  MATH  Google Scholar 

  • David Borwein, Jonathan M. Borwein, Peter B. Borwein and Roland Girgensohn, Giuga’s conjecture on primality, Amer. Math. Monthly, 103(1996) 40–50; MR 97b: 1 1004.

    Google Scholar 

  • Jonathan M. Borwein and Erick Bryce Wong, A survey of results relating to Giuga’s conjecture on primality, Advances in Mathematical Sciences; CRM’s 25 years (Montreal, P.Q., 1994) 13–27, CRM Proc. Lecture Notes, 11, Amer. Math. Soc., Providence RI, 1997; MR 98i: 1 1005.

    Google Scholar 

  • Nigel Boston and Marshall L. Greenwood, Quadratics representing primes, Amer. Math. Monthly, 102(1995) 595–599; MR 96g: 1 1154.

    Google Scholar 

  • J. Braun, Das Fortschreitungsgesetz der Primzahlen durch eine transcendente Gleichung exakt dargestelt, Wiss. Beilage Jahresber. Fr. W. Gymn. Trier, 1899, 96 pp.

    Google Scholar 

  • Rodrigo de Castro Korgi, Myths and realities about formulas for calculating primes (Spanish), Lect. Math., 14(1993) 77–101; MR 95c: 1 1009.

    Google Scholar 

  • R. Creighton Buck, Prime representing functions, Amer. Math. Monthly, 53 (1946) 265.

    MathSciNet  Google Scholar 

  • John H. Conway, Problem 2.4, Math. Intelligencer, 3 (1980) 45.

    Google Scholar 

  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institute, Washington, 1919, 1920, 1923; reprinted Stechert, New York, 1934; Chelsea, New York, 1952, 1966, Vol. I, Chap. XV III.

    Google Scholar 

  • Underwood Dudley, History of a formula for primes, Amer. Math. Monthly, 76(1969) 23 28; MR 38 #4270.

    Google Scholar 

  • Underwood Dudley, Formulas for primes, Math. Mag., 56 (1983) 17–22.

    MathSciNet  Google Scholar 

  • D. D. Elliott, A prime generating function, Two-Year Coll. Math. J., 14 (1983) 57.

    Google Scholar 

  • David Ellis, Some consequences of Wilson’s theorem, Univ. Nac. Tucumân Rev. Ser. A, 12(1959) 27–29; MR 21 #7179.

    Google Scholar 

  • P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc., 9(1934) 282–288; Zbl. 10, 103.

    Google Scholar 

  • P. Erdös, On consecutive integers, Nieuw Arch. Wisk. (3), 3(1955) 124–128; MR 17, 461f. [For the Fung and Williams reference, see A1.]

    Google Scholar 

  • Reijo Ernvall, A formula for the least prime greater than a given integer, Elem. Math., 30(1975) 13–14; MR 54 #12616.

    Google Scholar 

  • Robin Forman, Sequences with many primes, Amer. Math. Monthly 99(1992) 548–557; MR 93e: 1 1104.

    Google Scholar 

  • J. M. Gandhi, Formulae for the n-th prime, Proc. Washington State Univ. Conf. Number Theory, Pullman, 1971, 96–106; MR 48 #218.

    Google Scholar 

  • Betty Garrison, Polynomials with large numbers of prime values, Amer. Math. Monthly, 97(1990) 316–317; MR 91i: 1 1124.

    Google Scholar 

  • James Gawlik, A function which distinguishes the prime numbers, Math. Today (Southend-on-Sea) 33 (1997) 21.

    MathSciNet  Google Scholar 

  • Giuseppe Giuga, Sopra alcune proprietà caratteristiche dei numeri primi, Period. Math. (4), 23(1943) 12–27; MR 8, 11.

    Google Scholar 

  • Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat.(3), 14(83)(1950) 511–528; MR 13, 725.

    Google Scholar 

  • P. Goetgheluck, On cubic polynomials giving many primes, Elem. Math., 44(1989) 70–73; MR 90j: 1 1014.

    Google Scholar 

  • Solomon W. Golomb, A direct interpretation of Gandhi’s formula, Amer. Math. Monthly, 81(1974) 752–754; MR 50 #7003.

    Google Scholar 

  • Solomon W. Golomb, Formulas for the next prime, Pacific J. Math. 63(1976) 401–404; MR 53 #13094.

    Google Scholar 

  • R. L. Goodstein, Formulae for primes, Math. Gaz., 51 (1967) 35–36.

    MathSciNet  Google Scholar 

  • H. W. Gould, A new primality criterion of Mann and Shanks, Fibonacci Quart., 10(1972) 355–364, 372; MR 47 #119.

    Google Scholar 

  • S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2), 24(1981) 427–440; MR 82k:10054.

    Google Scholar 

  • Andrew Granville, Unexpected irregularities in the distribution of prime numbers, Proc. Internat. Congr. Math., Vol. 1, 2 (Zurich, 1994) 388–399, Birkhäuser Basel, 1995; MR 97d: 1 1139.

    Google Scholar 

  • Andrew Granville and Sun Zhi-Wei, Values of Bernoulli polynomials, Pacific J. Math. 172(1996) 117–137; MR 98b:11018.

    Google Scholar 

  • Silvio Guiasu, Is there any regularity in the distribution of prime numbers at the beginning of the sequence of positive integers? Math. Mag., 68 (1995) 110–121.

    MathSciNet  Google Scholar 

  • Richard K. Guy, Conway’s prime producing machine, Math. Mag., 56(1983) 26–33; MR 84j:10008.

    Google Scholar 

  • G. H. Hardy, A formula for the prime factors of any number, Messenger of Math., 35 (1906) 145–446.

    Google Scholar 

  • V. C. Harris, A test for primality, Nordisk Mat. Tidskr., 17(1969) 82; MR 40 #4197.

    Google Scholar 

  • E. Härtter, Über die Verallgemeinerung eines Satzes von Sierpinski, Elem. Math. 16 (1961) 123–127; MR 24 #A1869.

    Google Scholar 

  • Olga Higgins, Another long string of primes, J. Recreational Math. 14 (1981/82) 185.

    Google Scholar 

  • C. Isenkrahe, Ueber eine Lösung der Aufgabe, jede Primzahl als Function der vorhergehenden Primzahlen durch einen geschlossenen Ausdruck darzustellen, Math. Ann., 53 (1900) 42–44.

    MathSciNet  MATH  Google Scholar 

  • Jia Chao-Hua, The greatest prime factor of the integers in a short interval, Acta Math. Sinica, 29(1986) 815–825; MR 88f:11083; II, 32(1989) 188–199; MR 90m:11135; III, ibid. (N.S.), 9(1993) 321–336; MR 95c: 1 1107.

    Google Scholar 

  • James P. Jones, Formula for the n-th prime number, Canad. Math. Bull. 18(1975) 433–434; MR 57 #9641.

    Google Scholar 

  • James P. Jones, Daihachiro Sato, Hideo Wada Si Douglas Wiens, Diophantine representation of the set of prime numbers, Amer. Math. Monthly 83(1976) 449464; MR 54 #2615.

    Google Scholar 

  • James P. Jones and Yuri V. Matiyasevich, Proof of recursive unsolvability of Hilbert’s tenth problem, Amer. Math. Monthly, 98(1991) 689–709; MR 92i: 03050.

    Google Scholar 

  • Matti Jutila, On numbers with a large prime factor, J. Indian Math. Soc. (N.S.), 37(1973) 43–53(1974); MR 50 #12936.

    Google Scholar 

  • Steven Kahan, On the smallest prime greater than a given positive integer, Math. Mag., 47(1974) 91–93; MR 48 #10964.

    Google Scholar 

  • Sushil Kumar Karmakar, An algorithm for generating prime numbers, Math. Ed. (Siwan), 28(1994) 175.

    Google Scholar 

  • E. Karst, The congruence 2P-1 w 1 mod p2 and quadratic forms with a high density of primes, Elem. Math., 22 (1967) 85–88.

    MathSciNet  MATH  Google Scholar 

  • John Knopfmacher, Recursive formulae for prime numbers, Arch. Math. (Basel), 33 (1979/80) 144–149; MR 81j:10008.

    Google Scholar 

  • Masaki Kobayashi, Prime producing quadratic polynomials and class-number one problem for real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci., 66(1990) 119–121; MR 91i: 1 1140.

    Google Scholar 

  • L. Kuipers, Prime-representing functions, Nederl. Akad. Wetensch. Proc., 53(1950) 309–310 = Indagationes Math., 12(1950) 57–58; MR 11, 644.

    Google Scholar 

  • J. C. Lagarias, V. S. Miller and A. M. Odlyzko, Computing ir(x): the Meissel Lehmer method, Math. Comput., 44 (1985) 537–560.

    MathSciNet  MATH  Google Scholar 

  • Klaus Langmann, Eine Formel für die Anzahl der Primzahlen, Arch. Math. (Basel), 25(1974) 40; MR 49 #4951.

    Google Scholar 

  • A.-M. Legendre, Essai sur la Théorie des Nombres, Duprat, Paris, 1798, 1808.

    Google Scholar 

  • D. H. Lehmer, On the function x2+x+A, Sphinx, 6(1936) 212–214; 7 (1937) 40.

    Google Scholar 

  • Liu Hong-Kuan, The greatest prime factor of the integers in an interval, Acta Arith., 65(1993) 301–328; MR 95d:11117.

    Google Scholar 

  • S. Louboutin, R. A. Mollin and H. C. Williams, Class numbers of real quadratic fields, continued fractions, reduced ideals, prime-producing polynomials and quadratic residue covers, Canad. J. Math., 44 (1992) 1–19.

    MathSciNet  Google Scholar 

  • H. B. Mann and Daniel Shanks, A necessary and sufficient condition for primality and its source, J. Combin. Theory Ser. A, 13(1972) 131–134; MR 46 #5225.

    Google Scholar 

  • J.-P. Massias and G. Robin, Effective bounds for some functions involving prime numbers, Preprint, Laboratoire de Théorie des Nombres et Algorithmique, 123 rue A. Thomas, 87060 Limoges Cedex, France.

    Google Scholar 

  • Yuri V. Matiyasevich, Primes are enumerated by a polynomial in 10 variables, Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov,68(1977) 62–82, 144–145; MR 58 #21534; English translation: J. Soviet Math., 15 (1981) 33–44.

    Google Scholar 

  • W. H. Mills, A prime-representing function, Bull. Amer. Math. Soc., 53(1947) 604; MR 8, 567.

    Google Scholar 

  • Richard A. Mollin, Prime valued polynomials and class numbers of quadratic fields, Internat. J. Math. Math. Sei., 13(1990) 1–11; MR 91c: 1 1060.

    Google Scholar 

  • Richard A. Mollin, Prime-producing quadratics, Amer. Math. Monthly, 104(1997) 529–544; MR 98h: 1 1113.

    Google Scholar 

  • Richard A. Mollin and Hugh Cowie Williams, Quadratic nonresidues and prime-producing polynomials, Canad. Math. Bull. 32(1989) 474–478; MR 91a:11009. [see also Number Theory de Gruyter, 1989, 654–663 and Nagoya Math. J. 112(1988) 143–151.]

    Google Scholar 

  • Leo Moser, A prime-representing function, Math. Mag., 23 (1950) 163–164.

    Google Scholar 

  • Joe L. Mott and Kermit Rose, Prime-producing cubic polynomials, Ideal theoretic methods in commutative algebra (Columbia MO 1999) 281–317, Lecture Notes in Pure and Appl. Math., 220 Dekker, New York, 2001; MR 2002c: 11140.

    Google Scholar 

  • Gerry Myerson, Problems 96:16 and 96:17, Western Number Theory Problems, 96–12–16 and 19.

    Google Scholar 

  • K S Namboodiripad, A note on formulae for the n-th prime, Monatsh. Math. 75(1971) 256–262; MR 46 #126.

    Google Scholar 

  • T. B. M. Neill and M. Singer, The formula for the Nth prime, Math. Gaz., 49 (1965) 303.

    Google Scholar 

  • Ivan Niven, Functions which represent prime numbers, Proc. Amer. Math. Soc., 2(1951) 753–755; MR 13, 321a.

    Google Scholar 

  • O. Ore, On the selection of subsequences, Proc. Amer. Math. Soc., 3(1952) 706–712; MR 14, 256.

    Google Scholar 

  • Joaquin Ortega Costa, The explicit formula for the prime number function 7r(x), Revista Mat. Hisp.-Amer.(4), 10(1950) 72–76; MR 12, 392b.

    Google Scholar 

  • Laurentiu Panaitopol, On the inequality papb pab, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 41(89)(1998) 135–139; MR 2003c: 11115.

    Google Scholar 

  • Makis Papadimitriou, A recursion formula for the sequence of odd primes, Amer. Math. Monthly 82(1975) 289; MR 52 #246.

    Google Scholar 

  • Carlos Raitzin, The exact count of the prime numbers that do not exceed a given upper bound (Spanish), Rev. Ingr., 1(1979) 37–43; MR 82e:10074.

    Google Scholar 

  • K. Ramachandra, A note on numbers with a large prime factor, J. London Math. Soc. (2), 1(1969) 303–306; MR 40 #118; II J, Indian Math. Soc. (N.S.) 34(1970) 39–48(1971); MR 45 #8616.

    Google Scholar 

  • Stephen Regimbal, An explicit formula for the k-th prime number, Math. Mag., 48(1975) 230–232; MR 51 #12676.

    Google Scholar 

  • Paulo Ribenboim, Selling primes, Math. Mag., 68 (1995) 175–182.

    MathSciNet  MATH  Google Scholar 

  • Paulo Ribenboim, Are there functions that generate prime numbers? College Math. J., 28(1997) 352–359; MR 98h: 1 1019.

    Google Scholar 

  • B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1859, 671–680; also in Gesammelte Mathematische Werke, Teubner, Leipzig, 1892, pp. 145–155.

    Google Scholar 

  • J. B. Rosser Si L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962) 64–94.

    MathSciNet  MATH  Google Scholar 

  • Michael Rubinstein, A formula and a proof of the infinitude of the primes, Amer. Math. Monthly 100 (1993) 388–392.

    MathSciNet  Google Scholar 

  • W. Sierpinski, Elementary Number Theory, (ed. A. Schinzel) PWN, Warszawa, 1987, p. 218.

    MATH  Google Scholar 

  • W. Sierpinski, Sur une formule donnant tous les nombres premiers, C.R. Acad. Sci. Paris, 235(1952) 1078–1079; MR 14, 355.

    Google Scholar 

  • W. Sierpinski, Les binômes x2 + n et les nombres premiers, Bull. Soc. Royale Sciences Liège, 33 (1964) 259–260.

    MathSciNet  MATH  Google Scholar 

  • B. R. Srinivasan, Formulae for the n-th prime, J. Indian Math. Soc. (N.S.), 25(1961) 33–39; MR 26 #1289.

    Google Scholar 

  • B. R. Srinivasan, An arithmetical function and an associated formula for the n-th prime. I, Norske Vid. Selsk. Forh. (Trondheim) 35(1962) 68–71; MR 27 #101.

    Google Scholar 

  • Garry J. Tee, Simple analytic expressions for primes, and for prime pairs, New Zealand Math. Mag., 9(1972) 32–44; MR 45 #8601.

    Google Scholar 

  • E. Teuffel, Eine Rekursionsformel für Primzahlen, Jber. Deutsch. Math. Verein., 57(1954) 34–36; MR 15, 685.

    Google Scholar 

  • John Thompson, A method for finding primes, Amer. Math. Monthly, 60 (1953) 175; MR 14, 621.

    Google Scholar 

  • P. G. Tsangaris and James P. Jones, An old theorem on the GCD and its application to primes, Fibonacci Quart., 30(1992) 194–198; MR 93e: 1 1004.

    Google Scholar 

  • Charles Vanden Eynden, A proof of Gandhi’s formula for the n-th prime, Amer. Math. Monthly 79(1972) 625; MR 46 #3425.

    Google Scholar 

  • E. Vantieghem, On a congruence only holding for primes, Indag. Math. (N.S.), 2(1991) 253–255; MR 92e: 1 1005.

    Google Scholar 

  • C. P. Willans, On formulae for the Nth prime number, Math. Gaz., 48 (1964) 413–415.

    MathSciNet  MATH  Google Scholar 

  • Erick Wong, Computations on normal families of primes, M.Sc. thesis, Simon Fraser Univ., August 1997.

    Google Scholar 

  • C. P. Wormell, Formulae for primes, Math. Gaz., 51 (1967) 36–38.

    Google Scholar 

  • E. M. Wright, A prime representing function, Amer. Math. Monthly, 58(1951) 616–618; MR 13, 321b.

    Google Scholar 

  • E. M. Wright, A class of representing functions, J. London Math. Soc., 29 (1954) 63–71; MR 15, 288d.

    Google Scholar 

  • Don Zagier, Die ersten 50 Millionen Primzahlen, Beihefte zu Elemente der Mathematik 15, Birkhäuser, Basel 1977.

    Google Scholar 

  • P. Erdös, Problems in number theory and combinatorics, Congr. Numer. XVIII, Proc. 6th Conf. Numer. Math., Manitoba, 1976, 35–58 (esp. p. 53); MR 80e: 10005.

    Google Scholar 

  • Jörg Brüdern and Alberto Perelli, The addition of primes and power, Canad. J. Math., 48(1996) 512–526; MR 97h: 1 1118.

    Google Scholar 

  • R. Brünner, A. Perelli and J. Pintz, The exceptional set for the sum of a prime and a square, Acta Math. Hunger., 53(1989) 347–365; MR 91b: 1 1104.

    Google Scholar 

  • Chen Yong-Gao, On integers of the forms k — 2’ and k2 + 1, J. Number Theory 89(2001) 121–125; MR 2002b: 11020.

    Google Scholar 

  • Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29(1975) 79–81; MR 51 #12758.

    Google Scholar 

  • R. Crocker, On the sum of a prime and of two powers of two, Pacific J. Math., 36(1971) 103–107; MR 43 #3200.

    Google Scholar 

  • P. Erd6s, On integers of the form 2’+ p and some related problems, Summa Brasil. Math., 2(1947–51) 113–123; MR 13, 437.

    Google Scholar 

  • Patrick X. Gallagher, Primes and powers of 2, Inventiones Math., 29(1975) 125–142; MR 52 #315.

    Google Scholar 

  • C. Hooley, Applications of Sieve Methods, Academic Press, 1974, Chap. VIII.

    Google Scholar 

  • Koichi Kawada, On the representation of numbers as the sum of a prime and a k th power. Interdisciplinary studies on number theory (Japanese) Sûrikaisekikenkyûsho Kôkyüroku No. 837(1993) 92–100; MR 95k: 1 1129.

    Google Scholar 

  • Li Hong-Ze, The exceptional set for the sum of a prime and a square, Acta Math. Hangar., 99(2003) 123–141; MR 2004c: 11184.

    Google Scholar 

  • Donald E. G. Malm, A graph of primes, Math. Mag., 66(1993) 317–320; MR 94k: 1 1132.

    Google Scholar 

  • Walter E. Mientka and Roger C. Weitzenkamp, On f-plentiful numbers, J. Combin. Theory, 7(1969) 374–377; MR 42 #3015.

    Google Scholar 

  • W. Narkiewicz, On a conjecture of Erdös, Colloq. Math., 37(1977) 313–315; MR 58 #21971.

    Google Scholar 

  • A. Perelli and A. Zaccagnini, On the sum of a prime and a k th power, Izv. Ross. Akad. Nauk Ser. Mat., 59(1995) 185–200; MR 96f: 1 1134.

    Google Scholar 

  • A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris, 29(1849) 397–401, 738–739.

    Google Scholar 

  • Sun Zhi-Wei, On integers not of the form ±paf qb, Proc. Amer. Math. Soc., 128(2000) 997–1002; MR 2000i: 11157.

    Google Scholar 

  • Sun Zhi-Wei and Le Mao-Hua, Integers not of the form c(2’ + 2) + p°, Acta Arith., 99(2001) 183–190; MR 2002e: 11043.

    Google Scholar 

  • Sun Zhi-Wei and Yang Si-Man, A note on integers of the form 2’ + cp, Proc. Edinb. Math. Soc.(2) 45(2002) 155–160; MR 2002j: 11117.

    Google Scholar 

  • Saburô Uchiyama and Masataka Yorinaga, Notes on a conjecture of P. Erdôs, I, II, Math. J. Okayama Univ. 19(1977) 129–140; 20(1978) 41–49; MR 56 #11929; 58 #570.

    Google Scholar 

  • Mladen V. Vassilev-Missana, Note on “extraordinary primes”, Notes Number Theory Discrete Math., 1(1995) 111–113; MR 97g: 1 1004.

    Google Scholar 

  • R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5(1973) 64–79; MR 49 #7222.

    Google Scholar 

  • V. H. Vu, High order complementary bases of primes, Integers, 2(2002) Al2; MR 2003k: 11017.

    Google Scholar 

  • Wang Tian-Ze, On the exceptional set for the equation n = p + k 2, Acta Math. Sinica (N.S.), 11(1995) 156–167; MR 97i: 1 1104.

    Google Scholar 

  • A. Zaccagnini, Additive problems with prime numbers, Rend. Sem. Mat. Univ. Politec. Torino, 53(1995) 471–486; MR 98c: 1 1109

    Google Scholar 

  • Peter Fletcher, William Lindgren and Carl Pomerance, Symmetric and asymmetric primes, J. Number Theory, 58(1996) 89–99; MR 97c: 1 1007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.K. (2004). Prime Numbers. In: Unsolved Problems in Number Theory. Problem Books in Mathematics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26677-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26677-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1928-1

  • Online ISBN: 978-0-387-26677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics