Skip to main content

Diamond Microcutting Tools

  • Chapter
  • 2168 Accesses

7.12 Conclusions

Thin film deposition technologies, particularly CVD and PVD, have become critical for the manufacture of a wide range of industrial and consumer products. Trends in historical developments in the CVD diamond suggest that the technology is highly likely to yield substantial benefits in emerging technological products in fields of nanotechnology, biomedical engineering, NEMS, and MEMS devices. Several methods including plasma CVD, low pressure CVD, and atmospheric pressure CVD have matured into processes that are routinely used in industry. Microwave and hot filament CVD methods are now commonly used to grow diamond and these can be modified to coat uniformly for tools, NEMS, MEMS and biomedical applications. Diamond coatings examined on tools and biomedical tools showed much enhanced performance compared to uncoated tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spear KE and Dismukes JP, in Synthetic Diamond: Emerging CVD Science and Technology, The Electrochemical Society, John Wiley and Sons Inc., New York, 1994.

    Google Scholar 

  2. Wentorf RH, J. Phys. Chem., 69 (1965) 3063.

    Article  Google Scholar 

  3. Butler JE and Woodin RL, Phil. Trans. R. Soc. Lond., A342 (1993) 209.

    Article  Google Scholar 

  4. Ashfold MNR, May PW, Rego CA and Everitt NM, Chem. Soc. Rev., 23 (1994) 21.

    Article  Google Scholar 

  5. Bachmann PK and Messier R, Chem. Eng. News, 67 (1989) 24.

    Article  Google Scholar 

  6. Spear KE, J. Am. Ceram. Sci., 72 (1989) 171.

    Article  Google Scholar 

  7. Joffreau PO, Haubner R and Lux B, Mater. Res. Soc. Proc., EA-15 (1988) 15.

    Google Scholar 

  8. Spitsyn BV, Bouilov LL and Deryagin BV, J. Cryst. Growth, 52 (1981) 219.

    Article  Google Scholar 

  9. Angus JC, Electrochem. Soc. Proc., 89 (1989) 1

    Google Scholar 

  10. Yarbrough WA and Messier R, Science, 247 (1996) 688.

    Article  Google Scholar 

  11. Messier R, Badzian AR, Badzian T, Spear KE, Bachmann PK and Roy R, Thin Solid Films, 153 (1987) 1.

    Article  Google Scholar 

  12. Angus JC and Hayman CC, Science, 241 (1988) 913.

    Article  Google Scholar 

  13. Spear KE, Am J, Ceram. Soc., 72 (1989) 171.

    Article  Google Scholar 

  14. Kamo M, Sato U, Matsumoto S and Setaka N, Cryst J. Growth, 62 (1983) 642.

    Article  Google Scholar 

  15. Saito Y, Matsuda S and Nagita S, Mater J. Sci. Lett., 5 (1986) 565.

    Article  Google Scholar 

  16. Saito Y, Sato K, Tanaka H and Miyadera H, Mater J. Sci., 24 (1989) 293.

    Article  Google Scholar 

  17. Williams BE, Glass JT, Davis RF, Kobashi K and Horiuchi T, Vac J Sci. Technol. A, Vac. Surf. Films, 6 (1988) 1819.

    Article  Google Scholar 

  18. Kobashi K, Nishimura K, Kawate Y and Horiuchi T, Vac J Sci. Technol. A, Vac. Surf. Films, 6 (1988) 1816.

    Article  Google Scholar 

  19. Liou Y, Inspector A, Weimer R and Messier R, Appl. Phys. Lett., 55 (1989) 631.

    Article  Google Scholar 

  20. Zhu W, Randale CA, Badzian AR and Messier R, Vac J. Sci. Technol. A, Vac. Surface Films, 7 (1989) 2315.

    Article  Google Scholar 

  21. Matsumoto S, Mater J. Sci. Lett., 4 (1985) 600.

    Article  Google Scholar 

  22. Matsumoto S, Hino M and Kobayashi T, Appl. Phys. Lett., 51 (1987) 737

    Article  Google Scholar 

  23. Vitkayage DJ, Rudder RA, Fountain GG and Markunas RJ, Vac J. Sci. Technol., A6 (1988) 1812.

    Article  Google Scholar 

  24. Meyer DE, Ianno NJ, Woolam JA, Swartzlander AB and Nelson AJ, Mater J. Res., 3 (1988) 1397.

    Google Scholar 

  25. Wood P, Wydeyen T and Tsuji O, in Programs and Abstracts of the First International Conference on New Diamond Science and Technology, New Diamond Forum, Tokyo, Japan, 1988.

    Google Scholar 

  26. Jackman RB, Beckman J and Foord JS, Appl. Phys. Lett., 66 (1995) 1018.

    Article  Google Scholar 

  27. Suzuki K, Sawabe A, Yasuda H and Inuzuka T, Appl. Phys. Lett, 50 (1987) 728.

    Article  Google Scholar 

  28. Akatsuka F, Hirose Y and Kamaki K, Jap. J. Appl. Phys., 27 (1988) L1600.

    Article  Google Scholar 

  29. Suzuki K, Sawabe A and Inuzuka T, Jap. J. Appl. Phys., 29 (1990) 153.

    Article  Google Scholar 

  30. Niu CM, Tsagaropoulos, Baglio J, Dwight K and Wold A, J. Solid State Chem., 91 (1991) 47.

    Article  Google Scholar 

  31. Popovici G, Chao CH, Prelas MA, Charlson EJ and Meese JM, Mater J. Res., 10 (1995) 2011.

    Google Scholar 

  32. Chao CH, Popovici G, Charlson EJ, Charlson EM, Meese JM and Prelas MA, J. Cryst. Growth, 140 (1994) 454.

    Article  Google Scholar 

  33. Postek MT, Howard KS, Johnson AH and Macmichael KL, in Scanning Electron Microscopy, 1980.

    Google Scholar 

  34. Spirsyn BV, Bouilov LL and Deryagin BV, J. Cryst. Growth, 52 (1981) 219.

    Article  Google Scholar 

  35. Kobashi K, Nishimura K, Kawate Y and Horiuchi T, Phys. Rev. B, 38 (1988) 4067.

    Article  Google Scholar 

  36. Pickrell D, Zhu W, Badzian AR, Messier R and Newnham RE, Mater J. Res., 6 (1991) 1264.

    Google Scholar 

  37. Oatley CW, in Scanning Electron Microscope, Cambridge University Press, 1972.

    Google Scholar 

  38. Tobin MC, in Laser Raman Spectroscopy, Wiley Inter-science, New York, 1971.

    Google Scholar 

  39. Colthup NB, Daley LH and Wiberley SE, in Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1975.

    Google Scholar 

  40. Raman CV and Krishnan KS, Nature, 121 (1928) 501.

    Google Scholar 

  41. Nemanich RJ, Glass JT, Lucovsky G and Shroder RE, Vac J. Sci. Tech., 6 (1988) 1783.

    Article  Google Scholar 

  42. Knight DS and White WB, Mater J. Res., 4 (1989) 385.

    Google Scholar 

  43. Solin SA and Ramdas AK, Phys. Rev. B, 1 (1970) 1687.

    Article  Google Scholar 

  44. Leyendecker T, Lemmer O, Jurgens A, Esser S and Ebberink J, Surf. Coat.Technol, 48 (1991) 253.

    Article  Google Scholar 

  45. Murakawa M and Takeuchi S, Surf. Coat. Technol, 49 (1991) 359.

    Article  Google Scholar 

  46. Yaskiki T, Nakamura T, Fujimori N and Nakai T, Surf. Coat. Technol, 52 (1992) 81.

    Article  Google Scholar 

  47. Reineck J, Soderbery S, Eckholm P and Westergren K, Surf. Coat. Technol, 5 (1993) 47.

    Article  Google Scholar 

  48. Wang HZ, Song RH and Tang SP, Diamond and Relat. Mater, 2 (1993) 304.

    Article  Google Scholar 

  49. Inspector A, Bauer CE and Oles EJ, Surf. Coat. Technol, 68/69 (1994) 359

    Article  Google Scholar 

  50. Kanda K, Takehana S, Yoshida S, Watanabe R, Takano S, Ando H and Shimakura F; Surf. Coat. Technol, 73 (1995) 115

    Article  Google Scholar 

  51. Luz B and Haubner R, in Diamond and Diamond-like films and coatings, NATO-ISI Series B, Physics, 266, Edited by R. E. Clausing, 579, L. L. Horton, J. C Angus, and P. Koidl, Plenum Press, NY, 1991.

    Google Scholar 

  52. Chen X and Narayan J, Journal of Applied Physics, 74, (1993), 1468.

    Google Scholar 

  53. Klass W, Haubner R, and Lux B, Diamond and Related Materials, 6, (1997), 240.

    Article  Google Scholar 

  54. Zhu W, Yang PC, Glass JT, and Arezzo F, Journal of Materials Research, 10, (1995), 1455.

    Google Scholar 

  55. Lux B and Haubner R, Ceramics International, 22, (1996), 347.

    Article  Google Scholar 

  56. C.R.C. Handbook of Chemistry and Physics, Edited by R. C. Weast, C.R.C. Press, FL, 1989–1990.

    Google Scholar 

  57. Haubner R, Lindlbauer A, and Lux B, Diamond and Related Materials, 2, (1993), 1505. 72

    Article  Google Scholar 

  58. Chang CP, Flamm DL, Ibbotson DE, and Mucha JA, J. Appl. Phys., 63 (1988) 1744.

    Article  Google Scholar 

  59. Gusev MB, Babaey VG, Khvostov VV, Lopez-Ludena GM, Yu Brebadze A, Koyashin IY, and Alexanko AE, Diamond and Related Materials, 6 (1997), 89–94.

    Article  Google Scholar 

  60. Endler I, Barsch K, Leonhardt A, Scheibe HJ, Ziegele H, Fuchs I, and Raatz C, Diamond and Related Materials, 8, (1999), 834–839.

    Article  Google Scholar 

  61. Kamiya S, Takahashi H, Polini R and Traversa E, Diamond and Relat. Mater, 9 (2000) 191–194.

    Article  Google Scholar 

  62. Inspector A, Oles EJ and Bauer CE, Int.J.Refract; Metal Hard Materials, 15 (1997) 49.

    Article  Google Scholar 

  63. Itoh H, Osaki T, Iwahara H and Sakamoto H, J. Materials Science, 26 (1991) 370.

    Google Scholar 

  64. Liu H and Dandy DS; Diamond Chemical Vapor Deposition, Noyes, 1996.

    Google Scholar 

  65. Nazare MH and Neves AJ: Properties, Growth and Application of Diamond, 1998.

    Google Scholar 

  66. Zhang GF and Buck V, Surf. Coat. Technol, 132 (2000) 256.

    Article  Google Scholar 

  67. Haubner R, Kubelka S, Lux B, Griesser M and Grasserbauer M, J. Physics. 4th Coll, C5,5 (1995) 753.

    Google Scholar 

  68. May P, Rego C, Thomas R, Ashfold MN and Rosser KN, Diamond and Related Materials, 3 (1994) 810.

    Article  Google Scholar 

  69. Gouzman I and Hoffmann A, Diamond and Related Materials, 7 (1998) 209.

    Article  Google Scholar 

  70. Wang W, Liao K, Wang J, Fang L, Ding P, Esteve J, Polo MC and Sanchez G, Diamond and Related Materials, 8 (1999) 123

    Article  Google Scholar 

  71. Wang BB, Wang W and Liao K, Diamond and Related Materials, 10 (2001) 1622.

    Article  Google Scholar 

  72. Kim YK, Han YS and Lee JY. Diamond and Related Materials, 7 (1998) 96.

    Article  Google Scholar 

  73. Wang WL, Liao KJ and Gao GC, Surf. Coat. Technol, 126 (2000) 195.

    Article  Google Scholar 

  74. M.C Polo, W. Wang, G. Sanshez, J. Andujar and J. Esteve, Diamond and Related Materials, 6 (1997) 579.

    Article  Google Scholar 

  75. Kamiya S, Yoshida N, Tamura Y, Saka M and Abe H, Surf. Coat. Technol, 142–144 (2001) 738.

    Article  Google Scholar 

  76. Sein H, Ahmed W, Rego CA, Jones AN, Amar M, Jackson M J, Polini R, J. Phys: Condes. Matter, 15, (2003), S2961–S2967.

    Article  Google Scholar 

  77. May PW, Rego CA, Thomas RM, Ashford MNR and Rosser KN, Diamond and Related Materials, 3 (1994) 810–813.

    Article  Google Scholar 

  78. Amirhaghi S, Reehal HS, Plappert E, Bajic Z, Wood RJK, Wheeler DW, Diamond and Related Materials, 8 (1999) 845–849.

    Article  Google Scholar 

  79. Jackson M J, Gill MDH, Ahmed W, Sein H, Proceedings of the Institute of Mechanical Engineers — (Part L): J. Materials, 217, (2003), 77–83.

    Google Scholar 

  80. Sein H, Jackson M J, Ahmed W, Rego CA, New Diamond and Frontier Carbon Technology, 12,(6) (2000), 1–10.

    Google Scholar 

  81. Sein H, Ahmed W, Jackson M J, Woodwards R and Polini R, Thin Solid Films, 447–448 (2004), 455–461.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Diamond Microcutting Tools. In: Micro and Nanomanufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-26132-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26132-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25874-4

  • Online ISBN: 978-0-387-26132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics