Skip to main content

Intelligent Polymeric Networks in Biomolecular Sensing

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Since the development of the first biological sensor over 40 years ago [1], the biosensor field has continuously evolved. Today, biosensors are applied in a wide range of uses, including environmental analysis, medical diagnostics, bioprocess monitoring, and biowarfare agent detection. The success of the biosensor is dependent on the ability to rapidly, sensitively, and selectively recognize various biomolecules, with relative importance dependent on the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Clark, Jr., and C. Lions. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci., 102:29, 1962.

    Article  Google Scholar 

  2. C.K. O’Sullivan and C.G. Guilbault. Commercial quartz crystal microbalances-theory and applications. Biosens. Bioelectron., 14:663, 1999.

    Article  Google Scholar 

  3. B.A. Cavic, G.L. Hayward, and M. Thompson. Acousticwaves and the study of biochemical macromolecules and cells at the sensor-liquid interface. Analyst, 124:1405, 1999.

    Article  Google Scholar 

  4. E Benes, M. Groschl, W. Burger, and M. Schmid. Sensors based on piezoelectric resonators. Sensor. Actuat. A-Phys., 48:1, 1995.

    Article  Google Scholar 

  5. M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple. Microcantilever transducers: A new approach to sensor technology. Anal. Chem., 74:568A, 2002.

    Article  Google Scholar 

  6. O. Wolfbeis. Fiber-optic chemical sensors and biosensors. Anal. Chem., 74:2663, 2002.

    Article  Google Scholar 

  7. J. Homola, S.S. Yee, and G Gauglitz. Surface plasmon resonance sensors: Review. Sensor. Actuat. B-Chem., 54:3, 1999.

    Article  Google Scholar 

  8. E. Bakker and M. Telting-Diaz. Electrochemical sensors. Anal. Chem., 74:2781, 2002.

    Article  Google Scholar 

  9. S. Subrahmanyam, S. Piletsky, and A. Turner. Application of natural receptors in sensors and assays. Anal. Chem., 74:3942, 2002.

    Article  Google Scholar 

  10. M. Byfield and R. Abuknesha. Biochemical aspects of biosensors. Biosens. Bioelectron., 9:373, 1994.

    Article  Google Scholar 

  11. M.E. Byrne, K. Park, and N.A. Peppas. Molecular imprinting within hydrogels. Adv. Drug Deliver. Rev., 54:149, 2002.

    Article  Google Scholar 

  12. J.Z. Hilt, M.E Byrne, and N.A. Peppas. Configurational biomimesis in drug delivery: Molecular imprinting of biologically significant molecules. Adv. Drug Deliver. Rev., 11:1599, 2004.

    Article  Google Scholar 

  13. R. McGlennen. Miniaturization technologies for molecular diagnostics. Clin. Chem., 47:393, 2001.

    Google Scholar 

  14. T. Vo-Dinh and B. Cullum. Biosensors and biochips: Advances in biological and medical diagnostics. Fresen. J. Anal. Chem., 366:540, 2000.

    Article  Google Scholar 

  15. A. Manz, N. Graber, and H. Widmer. Miniaturized total chemical-analysis systems-a novel concept for chemical sensing. Sensor. Actuat. B-Chem., 1:244, 1990.

    Article  Google Scholar 

  16. A. Tudos, G. Besselink, and R. Schasfoort. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip, 1:83, 2001.

    Article  Google Scholar 

  17. Y. Liu, C. Garcia, and C. Henry. Recent progress in the development of mu TAS for clinical analysis. Analyst, 128:1002, 2003.

    Article  Google Scholar 

  18. N.A Peppas. Hydrogels in Medicine and Pharmacy. CRC Press, Boca Raton, FL, 1986.

    Google Scholar 

  19. R. Langer and N.A. Peppas. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J., 49:2990, 2003.

    Article  Google Scholar 

  20. N.A. Peppas, Y. Huang, M. Torres-Lugo, J.H. Ward, and J. Zhang. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Ann. Revs. Biomed. Eng., 2:9, 2000.

    Article  Google Scholar 

  21. A.M. Lowman and N.A. Peppas. Pulsatile drug delivery based on a complexation/decomplexation mechanism. In S.M. Dinh, J.D. DeNuzzio, and A.R. Comfort, (eds.), Intelligent Materials for Controlled Release, ACS Symposium Series, ACS, Washington, DC, Vol. 728, pp. 30–42, 1999.

    Google Scholar 

  22. N.A. Peppas and P. Colombo. Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J. Control. Rel., 45:35, 1997.

    Article  Google Scholar 

  23. A.R. Khare and N.A. Peppas. Release behavior of bioactive agents from pH-sensitive hydrogels. J. Biomat. Sci., Polym. Ed., 4:275, 1993.

    Article  Google Scholar 

  24. L. Brannon-Peppas and N.A. Peppas. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem. Eng. Sci., 46:715, 1991.

    Article  Google Scholar 

  25. Y. Qiu and K. Park. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Revs., 53:321, 2001.

    Article  Google Scholar 

  26. B. Jeong, S.W. Kim, and Y.H. Bae. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Revs., 54:37, 2002.

    Article  Google Scholar 

  27. T. Miyata, T. Uragami, and K. Nakamae. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Revs., 54:79, 2002.

    Article  Google Scholar 

  28. A.M. Lowman and N.A. Peppas. Analysis of the complexation/decomplexation phenomena in graft copolymer networks. Macromolecules, 30:4959, 1997.

    Article  Google Scholar 

  29. N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50:27, 2000.

    Article  Google Scholar 

  30. R.A. Scott and N.A. Peppas. Compositional effects on network structure of highly cross-linked copolymers of PEG-containing multiacrylates with-acrylic acid. Macromolecules, 32:6139, 1999.

    Article  Google Scholar 

  31. K. Podual, F.J. Doyle III, and N.A. Peppas. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control Rel., 67:9, 2000.

    Article  Google Scholar 

  32. A.J. Lee and K. Park. Synthesis and characterization of sol-gel phase-reversible hydrogels sensitive to glucose. J. Mol. Recognit., 9:549, 1996.

    Article  Google Scholar 

  33. C. Gao and D. Yan. Hyperbranched polymers: From synthesis to applications. Progress in Polymer Science, 29:183, 2004.

    Article  Google Scholar 

  34. J. Jansen, E. van den Berg, and E.W. Meijer. Encapsulation of guest molecules into a dendritic box. Science, 266:1226, 1994.

    Article  Google Scholar 

  35. L.G. Griffith and S. Lopina. Microdistribution of substratum-bound ligands affects cell function: Hepatocyte spreading on PEO-tethered galactose. Biomaterials, 19:979, 1998.

    Article  Google Scholar 

  36. S.C. Zimmerman, M.S. Wendland, N.A. Rakow, I. Zharov, and K.S. Suslick. Synthetic hosts by monomolecular imprinting inside dendrimers. Nature, 418:399, 2002.

    Article  Google Scholar 

  37. E. Oral and N.A Peppas. Responsive and recognitive hydrogels using star polymers. J. Biomed. Mater. Res., 68A:439, 2004.

    Article  Google Scholar 

  38. Y. Ito. Photolithographic synthesis of intelligent microgels. J. Intell. Mater. Syst. Struct. 10:541, 1999.

    Article  Google Scholar 

  39. G. Chen, Y. Imanishi, and Y. Ito. Photolithographic synthesis of hydrogels. Macromolecules, 31:4379, 1998.

    Article  Google Scholar 

  40. G. Chen, Y. Ito, and Y. Imanishi. Micropattern immobilization of a pH-sensitive polymer. Macromolecules, 30:7001, 1997.

    Article  Google Scholar 

  41. Y. Nakayama, J.M. Anderson, and T. Matsuda. Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions. J. Biomed. Mater. Res. (Appl. Biomater.), 53:584, 2000.

    Article  Google Scholar 

  42. K.M. DeFife, E. Colton, Y. Nakayama, T. Matsuda, and J.M. Anderson. Spatial regulation and surface chemistry control of monocyte/macrophage adhesion and foreign body giant cell formation by photochemically micropatterned surfaces. J. Biomed. Mater. Res., 45:148, 1999.

    Article  Google Scholar 

  43. J. Higashi, Y. Nakayama, R.E. Marchant, and T. Matsuda. High-spatioresolved microarchitectural surface prepared by photograft copolymerization using dithiocarbamate: Surface preparation and cellular responses. Langmuir, 15:2080, 1999.

    Article  Google Scholar 

  44. Y. Nakayama, K. Nakamata, Y. Hirano, K. Goto, and T. Matsuda. Surface hydrogelation of thiolated watersoluble copolymers on gold. Langmuir, 14:3909, 1998.

    Article  Google Scholar 

  45. Y. Nakayama and T. Matsuda. Surface macromolecular architectural designs using photo-graft copolymerization based on photochemistry of benzyl N,N-diethyldithiocarbamate. Macromolecules, 29:8622, 1996.

    Article  Google Scholar 

  46. J.H. Ward, R. Bashir, and N.A. Peppas. Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J. Biomed. Mater. Res., 56:351, 2001.

    Article  Google Scholar 

  47. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B. Jo. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 404:588, 2000.

    Article  Google Scholar 

  48. D.J. Beebe, J.S. Moore, Q. Yu, R.H. Liu, M.L. Kraft, B. Jo, and C. Devadoss. Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proc. Natl. Acad. Sci. U.S.A., 97:13488, 2000.

    Article  Google Scholar 

  49. B. Zhao and J.S. Moore. Fast pH-and ionic strength-responsive hydrogels in microchannels. Langmuir, 17:4758, 2001.

    Article  Google Scholar 

  50. Q. Yu, J.M. Bauer, J.S. Moore, and D.J. Beebe. Responsive biomimetic hydrogel valve for microfluidics. Appl. Phys. Lett., 78:2589, 2001.

    Article  Google Scholar 

  51. L. Low, S. Seetharaman, K. He, and M.J. Madou. Microactuators toward microwaves for responsive controlled drug delivery. Sens. Actu. B, 67:149, 2000.

    Article  Google Scholar 

  52. K. Sirkar and M.V. Pishko. Amperometric biosensors based on oxidoreductases immobilized in photopolymerized poly(ethylene glycol) redox polymer hydrogels. Anal. Chem., 70:2888, 1998.

    Article  Google Scholar 

  53. A. Munoz, R. Mas, C.A. Galan-Vidal, C. Dominiguez, J. Garcia-Raurich, and S. Alegret. Thin-film microelectrodes for biosensing. Quimica. Analytica. 18:155, 1999.

    Google Scholar 

  54. G. Jobst, I. Moser, M. Varahram, P. Svasek, E. Aschauer, Z. Trajanoski, P. Wach, P. Kotanko, F. Skrabal, and G. Urban. Thin-film microbiosensors for glucose-lactate monitoring. Anal. Chem., 68:3173, 1996.

    Article  Google Scholar 

  55. C. Jimenez, J. Bartrol, N.F. deRooij, and M. Koudelka. Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal. Chim. Acta., 351:169, 1997.

    Article  Google Scholar 

  56. B.S. Ebarvia, C.A. Binag, and F. Sevilla III. Surface and potentiometric properties of a SO2 sensor based on a hydrogel coated pH-FET. Sens. Actu. B, 76:644, 2001.

    Article  Google Scholar 

  57. N.F. Sheppard, Jr., M.J. Lesho, P. McNally, and A.S. Francomacaro. Microfabricated conductimetric pH sensor. Sens. Actu. B, 28:95, 1995.

    Article  Google Scholar 

  58. M.J. Lesho and N.F. Sheppard, Jr., Adhesion of polymer films to oxidized silicon and its effect on performance of a conductometric pH sensor. Sens. Actu. B, 37:61, 1996.

    Article  Google Scholar 

  59. N.F. Sheppard Jr., R.C. Tucker, and S. Salehi-Had. Design of a conductimetric pH microsensor based on reversibly swelling hydrogels. Sens. Actu. B, 10:73, 1993.

    Article  Google Scholar 

  60. S. Brahim, A.M.Wilson, D. Narinesingh, E. Iwuoha, and A. Guiseppi-Elie. Chemical and biological sensors based on electrochemical detection using conducting electroactive polymers. Microchim. Acta, 143:123, 2003.

    Article  Google Scholar 

  61. Y. Zheng, K.M. Gattas-Asfura, C. Li, F.M. Andreopoulos, S.M. Pham, and R.M. Leblanc. Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydroge. J. Phys. Chem. B, 107:483, 2003.

    Article  Google Scholar 

  62. A. Revzin, R.J. Russell, V.K. Yadavalli, W. Koh, C. Deister, D.D. Hile, M.B. Mellott, and M.V. Pishko. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 17:5440, 2001.

    Article  Google Scholar 

  63. F.J. Arregui, Z. Ciaurriz, M. Oneca, and I.R. Matias. Anexperimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sens. Actu. B, 96:165, 2003.

    Article  Google Scholar 

  64. K. Koh, A. Revzin, and M.V. Pishko. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir, 18:2459, 2002.

    Article  Google Scholar 

  65. C. Ruan, K.G. Ong, C. Mungle, M. Paulose, N.J. Nickl, and C.A. Grimes. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sens. Actu. B, 96:61, 2003.

    Article  Google Scholar 

  66. C. Ruan, K. Zeng, and C.A. Grimes. A mass-sensitive pH sensor based on a stimuli-responsive polymer. Anal. Chim. Acta, 497:123, 2003.

    Article  Google Scholar 

  67. I. Han, M. Han, J. Kim, S. Lew, Y.J. Lee, F. Horkay, and J.J. Magda. Constant-volume hydrogel osmometer: A new device concept for miniature biosensors. Biomacromolecules, 3:1271, 2002.

    Article  Google Scholar 

  68. L. Zhang and W.R. Seitz. A pH sensor based on force generated by pH-dependent polymer swelling. Anal. Bioanal. Chem., 373:5 5, 2002.

    Google Scholar 

  69. S. Herber, W. Olthuis, and P. Bergveld. A swelling hydrogel-based P-CO2 sensor. Sens. Actu. B, 91:378, 2003.

    Article  Google Scholar 

  70. R. Bashir, J.Z. Hilt, A. Gupta, O. Elibol, and N.A. Peppas. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett., 81:3091, 2002.

    Article  Google Scholar 

  71. J.Z. Hilt, A.K. Gupta, R. Bashir, and N.A. Peppas. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdev., 5:177, 2003.

    Article  Google Scholar 

  72. Y. Zhang, H. Ji, G.M. Brown, and T. Thundat. Detection of CrO42-using a hydrogel swelling microcantilever sensor. Anal. Chem., 75:4773, 2003.

    Article  Google Scholar 

  73. K. Liu and H. Ji. Detection of Pb2+ using a hydrogel swelling microcantilever sensor. Anal. Sci., 20:9, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peppas, N.A., Hilt, J.Z. (2006). Intelligent Polymeric Networks in Biomolecular Sensing. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics