Skip to main content

Optical MEMS-Based Sensor Development with Applications to Microfluidics

  • Chapter

Abstract

Despite challenges associated with development and fabrication, meso-scale and MEMS devices offer many advantages such as small size and lighter weight for space applications, higher reliability, smaller and better controlled sampling volumes in particular for biological diagnostics. Traditional optical diagnostics have been used to determine parameters such as velocity, concentration, particle size and temperature in laboratory-scale and full scale flow systems over the past three decades. A great deal of efforts has been invested in these diagnostics techniques, but the size ofMEMSprohibits the use of these traditional diagnostics. Spatial resolution, vibrations, and optical accessibility make traditional optical setups difficult to use for microfluidics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. Arik. Current status of particle image velocimetry and laser doppler anemometry instrumentation. In R.J. Donnelly and K.R. Sreenivasan (eds.), Flow at Ultra-High Reynolds and Rayleigh Numbers. Springer-Verlag, NY, 1998.

    Google Scholar 

  2. W. Bachalo. Method for measuring the size and velocity of spheres by Dual-beam light-scatter interferometry. Appl. Optics, 3:363, 1980.

    Article  Google Scholar 

  3. D. Dopheide, M. Faber, Y. Bing, and G. Taux. Semiconductor long-range anemometer using a 5 mW diode laser and a pin photodiode. In R.J Adrian (ed.), Applications of Laser Techniques to Fluid Mechanics, Springer-Verlag, pp. 385–399, 1990.

    Google Scholar 

  4. F. Durst, A. Melling, and J.H. Whitelaw. Principles and Practice of Laser Doppler Anemometry. Academic Press 1976.

    Google Scholar 

  5. D. Fourguette, D. Modarress, D. Wilson, M. Koochesfahani, and M. Gharib. An Optical MEMS-based Shear Stress Sensor for High Reynolds Number Applications. AIAA Paper 2003-0742, 41st AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2003.

    Google Scholar 

  6. D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib. Miniature and MOEMS Flow Sensors. Paper AIAA-2001-2982, 31st Fluid Dynamics Conference & Exhibit Anaheim, CA, 2001.

    Google Scholar 

  7. D. Fourguette and C. Suarez. Integrated Optical Diagnostics for Miniature Devices. AIAA Paper 99-0514, 37th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 1999.

    Google Scholar 

  8. M. Gharib, D. Modarress, D. Fourguette, and D. Wilson. Optical Microsensors for Fluid Flow Diagnostics. AIAA Paper 2002-0252, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002.

    Google Scholar 

  9. R.W. Gerchberg and W.O. Saxton. A practical algorithm for the determination of phase from images and diffraction plane pictures, Optik, 35:237–246, 1972.

    Google Scholar 

  10. M. Johansson and J. Bengtsson. Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-fourier-transform algorithm with soft operations. J. Mod. Opt., 47:1385–1398, 2000.

    Article  Google Scholar 

  11. B. Lehmann, C. Hassa, and J. Helbig. Three-component laser-doppler measurements of the confined model flow behind a swirl nozzle. Developments if Laser Techniques and Fluid Mechanics, Selected Papers from the 8th International Symposium, Lisbon, Portugal, Springer Press, pp. 383–398, 1996.

    Google Scholar 

  12. P.D. Maker and R.E. Muller. Phase holograms in polymethylmethacrylate. J. Vac. Sci. Tech. B, 10:2516–2519, 1992.

    Article  Google Scholar 

  13. P.D Maker, D.W. Wilson, and R.E. Muller. Fabrication and Performance of Optical Interconnect Analog Phase Holograms made by E-beam Lithography. In R.T. Chen and P.S. Guilfoyle (eds.), Optoelectronic Interconnects and Packaging, Proc. SPIE CR62, pp. 415–430, 1996.

    Google Scholar 

  14. D. Modarress, D. Fourguette, F. Taugwalder, M. Gharib, S. Forouhar, D. Wilson, and J. Scalf. Design and Development of Miniature and Micro Doppler Sensors. 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000.

    Google Scholar 

  15. D. Modarress and D.A. Johnson. Investigation of Turbulent Boundary Layer Separation Using Laser Ve-locimetry. AIAA J., 17(7):1979.

    Google Scholar 

  16. D. Modarress and D. Tan. Application of LDA to Two-phase Flows. Exp. Fluids, 1:1983.

    Google Scholar 

  17. A.A. Naqwi and W.C. Reynolds. Dual Cylindrical Wave Laser Doppler Method for Measurement of Skin Frictionin Fluid Flow, Report No. TF-28, Stanford University, 1987.

    Google Scholar 

  18. [18] J. Turunen and F. Wyrowski (Eds.). Diffractive Optics for Industrial and Commercial Applications, John Wiley & Sons, 1998.

    Google Scholar 

  19. D.W. Wilson, P.D. Maker, and R.E. Muller. Binary Optic Reflection Grating for an Imaging Spectrometer. Diffractive and Holographic Optics Technology III, SPIE Proceedings, Vol. 2689, Jan. 1996.

    Google Scholar 

  20. D.W. Wilson, J.A. Scalf, S. Forouhar, R.E. Muller, F. Taugwalder, M. Gharib, D. Fourguette, and D. Modarress. Diffractive optic fluid shear stress sensor. Diffractive Optics and Micro Optics, OSA Technical Digest Optical Society of America, Washington DC, pp. 306–308, 2000.

    Google Scholar 

  21. D.W. Wilson, P.K. Gogna, R.J. Chacon, R.E. Muller, D. Fourguette, D. Modarress, F. Taugwalder, P. Svitek, and M. Gharib. Diffractive Optics for Particle Velocimetry and Sizing. Diffractive Optics and Micro Optics, OSA Technical Digest, Optical Society of America, Washington DC, pp. 11–13, 2002.

    Google Scholar 

  22. D.W. Wilson, P.D. Maker, R.E. Muller, P. Mouroulis, and J. Backlund. Recent Advances in Blazed Grating Fabrication by Electron-beam Lithography. Paper 5173-16, Proc. SPIE, 2003.

    Google Scholar 

  23. Y. Yeh and H.Z. Cummins. Localized Fluid Flow Measurements with a He-Ne Laser Spectrometer. Appl. Phys. Lett., 4:176–178, 1964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fourguette, D., Arik, E., Wilson, D. (2006). Optical MEMS-Based Sensor Development with Applications to Microfluidics. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics