Skip to main content

Nano-Particle Image Velocimetry: A Near-Wall Velocimetry Technique with Submicron Spatial Resolution [1]

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Over the last decade, characterizing and understanding fluid flow and transport at spatial scales of 100 μm or less has become a major area of research in fluid mechanics because of the rapid development of microscale devices based upon microelectromechanical systems (MEMS) fabrication techniques. Examples of such microfluidic devices include Labs-on-a-Chip for biochemical separation and analysis, inkjet printer heads, various types of microelectronic cooling devices, microscale fuel cells, microthrusters, and genomic and proteomic “chips” capable of sequencing and identifying various proteins including RNA and DNA. More recently, nanotechnology and the promise of engineering new devices at the molecular scale has sparked interest in understanding flow at spatial scales below 1μm. Optimizing and controlling the flow of liquids and gases in micro- and nanoscale devices requires both well-validated models of transport down to the molecular scale and diagnostic techniques with spatial resolution well below 1μm.

Over the last decade, characterizing and understanding fluid flow and transport at spatial scales of 100 μm or less has become a major area of research in fluid mechanics because of the rapid development of microscale devices based upon microelectromechanical systems (MEMS) fabrication techniques. Examples of such microfluidic devices include Labs-on-a-Chip for biochemical separation and analysis, inkjet printer heads, various types of microelectronic cooling devices, microscale fuel cells, microthrusters, and genomic and proteomic “chips” capable of sequencing and identifying various proteins including RNA and DNA. More recently, nanotechnology and the promise of engineering new devices at the molecular scale has sparked interest in understanding flow at spatial scales below 1μm. Optimizing and controlling the flow of liquids and gases in micro- and nanoscale devices requires both well-validated models of transport down to the molecular scale and diagnostic techniques with spatial resolution well below 1μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Granick, Y. Zhu, and H. Lee. Nat. Mat., 2:221, 2003.

    Article  Google Scholar 

  2. P.G. De Gennes. Langmuir, 18:3413, 2002.

    Article  Google Scholar 

  3. P. Attard. Advan. Coll. Int. Sci., 104:75, 2003.

    Article  Google Scholar 

  4. O.I. Vinogradova. Int. J. Min. Proc., 56:31, 1999.

    Article  Google Scholar 

  5. D.C. Tretheway and C.D. Meinhart. Phys. Fluids, 14:L9, 2002.

    Article  Google Scholar 

  6. R. Pit, H. Hervet, and L. Léger. Phys. Rev. Lett., 85:980, 2000.

    Article  Google Scholar 

  7. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, and R.J. Adrian. Exp. Fluids, 25:316, 1998.

    Article  Google Scholar 

  8. W.R. Lempert, K. Magee, P. Ronney, K.R. Gee, and R.P. Haughland. Exp. Fluids, 18:249, 1995.

    Article  Google Scholar 

  9. C.P. Gendrich, M.M. Koochesfahani, and D.G. Nocera. Exp. Fluids, 23:361, 1997.

    Article  Google Scholar 

  10. P.H. Paul, M.G. Garguilo, and D.J. Rakestraw. Anal. Chem., 70:2459, 1998.

    Article  Google Scholar 

  11. D. Sinton and D. Li. Coll. Surf. A: Physicochem. Eng. Asp., 222:273, 2003.

    Article  Google Scholar 

  12. C. Lum and M. Koochesfahani. Bull. Am. Phys. Soc., 48(10):58, 2003.

    Google Scholar 

  13. E. Bonaccurso, M. Kappl, and H.-J. Butt. Phys. Rev. Lett., 88:076103, 2002.

    Article  Google Scholar 

  14. C.M. Zettner and M. Yoda. Exp. Fluids, 34:115, 2003.

    Google Scholar 

  15. E. Hecht. Optics (3rd Ed.), Addison-Wesley, Reading, p. 124, 1998.

    Google Scholar 

  16. H.K.V. Lotsch. Optik 32:189, 1970.

    Google Scholar 

  17. D. Axelrod, E.H. Hellen, and R.M. Fulbright. In J.R. Lakowicz (ed.), Topics in Fluorescence Spectroscopy, Vol. 3: Biochemical Applications. Plenum Press, New York, p. 289, 1992.

    Google Scholar 

  18. D. Axelrod, T.P. Burghardt, and N.L. Thompson. Ann. Rev. Biophys. Bioeng., 13:247, 1984.

    Article  Google Scholar 

  19. D.C. Prieve and N.A. Frej. Langmuir, 6:396, 1990.

    Article  Google Scholar 

  20. R. Sadr, H. Li, and M. Yoda. Exp. Fluids, 38:90, 2005.

    Article  Google Scholar 

  21. R.J. Adrian. Ann. Rev. Fluid Mech., 23:261, 1991.

    Article  Google Scholar 

  22. C.D. Meinhart and S.T. Wereley. Meas. Sci. Technol., 14:1047, 2003.

    Article  Google Scholar 

  23. M.G. Olsen and R.J. Adrian. Opt. Laser Technol., 32:621, 2000.

    Article  Google Scholar 

  24. C.D. Meinhart, S.T. Wereley, and J.G. Santiago. J. Fluids Eng., 122:285, 2000.

    Article  Google Scholar 

  25. M.A. Bevan and D.C. Prieve. J. Chem. Phys., 113:1228, 2000.

    Article  Google Scholar 

  26. H. Faxén. Ann. Phys., 4(68):89, 1922.

    Google Scholar 

  27. A. Einstein. Ann. Phys., 17:549, 1905.

    Google Scholar 

  28. A.J. Goldman, R.G. Cox, and H. Brenner. Chem. Eng. Sci., 22:637, 1967.

    Article  Google Scholar 

  29. J. Westerweel. Exp. Fluids, 29:S3, 2000.

    Article  Google Scholar 

  30. M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide, Springer, Berlin, p. 129, 1998.

    Google Scholar 

  31. R.D. Keane and R.J. Adrian. Appl. Sci. Res., 49:191, 1992.

    Article  Google Scholar 

  32. R. Sadr, M. Yoda, Z. Zheng, and A.T. Conlisk. J. Fluid Mech., 506:357, 2004.

    Article  MATH  Google Scholar 

  33. D.F. Liang, C.B. Jiang, and Y.L. Li. Exp. Fluids, 33:684, 2002.

    Google Scholar 

  34. J. Westerweel, P.F. Gelhoed, and R. Lindken. Exp. Fluids, 37:375, 2004.

    Article  Google Scholar 

  35. A.T. Conlisk, J. McFerran, Z. Zheng, and D.J. Hansford. Anal. Chem., 74:2139, 2002.

    Article  Google Scholar 

  36. J.M. Ramsey, J.P. Alarie, S.C. Jacobson, and N.J. Peterson. In Y. Baba, S. Shoji, and A.J. van den Berg (eds.), Micro Total Analysis Systems 2002, Kluwer Academic Publishers, Dordrecht, p. 314

    Google Scholar 

  37. K.D. Kihm, A. Banerjee, C.K. Choi, and T. Takagi. Exp. Fluids, 37:811, 2004.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yoda, M. (2006). Nano-Particle Image Velocimetry: A Near-Wall Velocimetry Technique with Submicron Spatial Resolution [1]. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics