Skip to main content

Modeling Electroosmotic Flow in Nanochannels

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

The determination of the nature of fluid flow at small scales is becoming increasingly important because of the emergence of new technologies. These techologies include Micro- Electro Mechanical Systems (MEMS) comprising micro-scale heat engines, micro-aerial vehicles and micro pumps and compressors and many other systems. Moreover, newideas in the area of drug delivery and its control, inDNA and biomolecular sensing, manipulation and transport and the desire to manufacture laboratories on a microchip (lab-on-a-chip) require the analysis and computation of flows on a length scale approaching molecular dimensions. On these small scales, new flow features appear which are not seen in macro-scale flows. In this chapter we review the state-of-th-art in modeling liquid flows at nanoscale with particular attention paid to liquid mixture flows applicable to rapid molecular analysis and drug delivery and other applications in biology

The determination of the nature of fluid flow at small scales is becoming increasingly important because of the emergence of new technologies. These techologies include Micro- Electro Mechanical Systems (MEMS) comprising micro-scale heat engines, micro-aerial vehicles and micro pumps and compressors and many other systems. Moreover, newideas in the area of drug delivery and its control, inDNA and biomolecular sensing, manipulation and transport and the desire to manufacture laboratories on a microchip (lab-on-a-chip) require the analysis and computation of flows on a length scale approaching molecular dimensions. On these small scales, new flow features appear which are not seen in macro-scale flows. In this chapter we review the state-of-th-art in modeling liquid flows at nanoscale with particular attention paid to liquid mixture flows applicable to rapid molecular analysis and drug delivery and other applications in biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Robinson and R.H. Stokes. Electrolyte Solutions, Aademic Press: New York, p. 284, 1959.

    Google Scholar 

  2. J.S. Newman. Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, p. 138, 1973.

    Google Scholar 

  3. R.J. Hunter. Zeta Potential in Colloid Science, Academic Press: London, p. 59, 1981.

    Google Scholar 

  4. R.F. Probstein. Physicochemical Hydrodynamics, Butterworths: Boston, p. 161, 1989.

    Google Scholar 

  5. Paul Delahay. Double Layer and Electrode Kinetics, Wiley Interscience, New York, 1965.

    Google Scholar 

  6. John O’M. Bockris and Amulya K.N. Reddy. Modern Electrochemistry, Volume 1 Ionics, (2 Ed.), Plenum Press, New York, London, pp. 273f, 1998.

    Google Scholar 

  7. J. Israelachvili. Intermolecular and Surface Forces, (2 Ed.), Academic Press, London, 1991.

    Google Scholar 

  8. [8] Private communication by Tony Boiarski, 2002.

    Google Scholar 

  9. D. Hansford, T. Desai, and M. Ferrari. Nanoscale size-based biomoleculart separation technology, In J. Cheng, and L.J. Kricka (eds.), Biochip Technology, Harwood Academic Publishers, 341, 2001.

    Google Scholar 

  10. E.J.W. Verwey and J.Th. G. Overbeek. Theory of Stability of Lyophobic Colloids, Esevier: Amsterdam, 1948.

    Google Scholar 

  11. W. Qu and D. Li. A model for overlapped EDL fields. J. Coll. Interface Sci., 224:397, 2000.

    Article  Google Scholar 

  12. D. Burgeen and F.R. Nakache. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem., 68:1084, 1964.

    Google Scholar 

  13. S. Levine, John R. Marriott, and Kenneth Robinson. Theory of electrokinetic flow in a narrow parallel-plate channel. Farad. Trans., II, 71:1, 1975.

    Article  Google Scholar 

  14. C.L. Rice and R. Whitehead. Electrokinetic flow in a narrow capillary. J. Phys. Chem., 69(11):4017, 1965.

    Google Scholar 

  15. S. Levine, J.R. Marriott, G. Neale, and N. Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials. J. Coll. Int. Sci., 52(1):136, 1975.

    Article  Google Scholar 

  16. A.T. Conlisk, Jennifer McFerran, Zhi Zheng, and Derek Hansford. Mass transfer and flow in electrically charged micro-and nano-channels. Anal. Chem., 74(9):2139, 2002.

    Article  Google Scholar 

  17. Zhi Zheng, Derek J, Hansford, and A.T. Conlisk. Effect of multivalent ions on electroosmotic flow in micro and nanochannels. Electrophoresis, 24:3006, August 2003.

    Google Scholar 

  18. H.L.F. Helmholtz. Ann. Physik., 7(3):337, 1879.

    Google Scholar 

  19. P. Debye, and E. Huckel. The interionic attraction theory of deviations from ideal behavior in solution. Z. Phys., 24:185, 1923.

    Google Scholar 

  20. G. Gouy. About the electric charge on the surface of an electrolyte. J. Physics A, 9:457, 1910.

    Google Scholar 

  21. D.L. Chapman. A contribution to the theory of electrocapillarity. Phil. Mag., 25:475, 1913.

    Google Scholar 

  22. O. Stern. The theory of the electrolytic double layer. Z. Elektrochem., 30:508, 1924.

    Google Scholar 

  23. J. Kevorkian, and J.D. Cole. Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  24. S.C. Jacobson, S.V. Ermakov, and J.M. Ramsey. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal. Chem., 71:3273, 1999.

    Article  Google Scholar 

  25. R. Sadr, M. Yoda, Z. Zheng, and A.T. Conlisk. An experimental study of electroosmotic flow in rectangular microchannels. J. Fluid Mech., 506:357, 2004.

    Article  MATH  Google Scholar 

  26. J.B. Freund. Electro-osmosis in a Nanometer-scale Channel Studied by Atomistic Simulation. J. Chem. Phys., 116(5):2194, 2002.

    Article  Google Scholar 

  27. R. Qiao and N.R. Aluru. Ion Concentrations and Velocity Profiles in Nanochannel Electroosmotic Flows. J. Chem. Phys., 118(10):4692, 2003.

    Article  Google Scholar 

  28. W. Zhu, S.J. Singer, Z. Zheng, and A.T. Conlisk. Electroosmotic Flow of a Model Electrolyte. Phys. Rev., E 71(4):41501, 2005.

    Google Scholar 

  29. A.J. Corkhill and L. Rosenhead. Distribution of Charge and Potential in an Electrolyte Bounded by Two Infinite Parallel Plates. Proc. Royal Soc., 172(950):410, 1939.

    Google Scholar 

  30. S. Levine and A. Suddaby. Simplified Forms for Free Energy of the Double Layers of Two Plates in a Symmetrical Electrolyte. Proc. Phys. Soc., A 64(3):287, 1951.

    Google Scholar 

  31. H.J.C. Berendsen, J.P.M. Postma, W.F. von Gunsteren, and J. Hermans. Interaction Models for Water in Relation to Protein Hydration. In B. Pullman (ed.), Intermolecular Forces. Reidel, Dordrecht, Holland, p. 331, 1981.

    Google Scholar 

  32. H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma. The Missing Term in Effective Pair Potentials. J. Phys. Chem., 91(24):6269, 1987.

    Article  Google Scholar 

  33. L. Onsager and N.N.T. Samaras. The Surface Tension of Debye-Hückel Electrolytes. J. Chem. Phys., 2(8):1934.

    Google Scholar 

  34. K.P. Travis and K.E. Gubbins. Poiseuille Flow of Lennard-Jones Fluids in Narrow Slit Pores. J. Chem. Phys., 112(4):1984, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Conlis, A.T., Singer, S. (2006). Modeling Electroosmotic Flow in Nanochannels. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics