Skip to main content

Microscale Flow and Transport Simulation for Electrokinetic and Lab-on-Chip Applications

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

The proliferation of manufacturing techniques for building micro- and nano-scale fluidic devices has led to a virtual explosion in the development of microscale chemical and biological analysis systems, commonly referred to as integrated microfluidic devices or Labs-on-a-Chip [14]. Application areas into which these systems have penetrated include: DNA analysis [47], separation based detection [10, 36], drug development [59], proteomics [22], fuel processing [31] and a host of others, many of which are extensively covered in this book series. The development of these devices is a highly competitive field and as such researchers typically do not have the luxury of large amounts of time and money to build and test successive prototypes in order to optimize species delivery, reaction speed or thermal performance. Rapid prototyping techniques, such as those developed by Whitesides’ group [11, 44], and the shift towards plastics and polymers as a fabrication material of choice [8] have significantly helped to cut cost and development time once a chip design has been selected.

The proliferation of manufacturing techniques for building micro- and nano-scale fluidic devices has led to a virtual explosion in the development of microscale chemical and biological analysis systems, commonly referred to as integrated microfluidic devices or Labs-on-a-Chip [14]. Application areas into which these systems have penetrated include: DNA analysis [47], separation based detection [10, 36], drug development [59], proteomics [22], fuel processing [31] and a host of others, many of which are extensively covered in this book series. The development of these devices is a highly competitive field and as such researchers typically do not have the luxury of large amounts of time and money to build and test successive prototypes in order to optimize species delivery, reaction speed or thermal performance. Rapid prototyping techniques, such as those developed by Whitesides’ group [11, 44], and the shift towards plastics and polymers as a fabrication material of choice [8] have significantly helped to cut cost and development time once a chip design has been selected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.M. Barragán and C.R. Bauzá. Electroosmosis through a cation-exchange membrane: Effect of an ac perturbation on the electroosmotic flow. J. Colloid Interface Sci., 230:359, 2000.

    Article  Google Scholar 

  2. G.K. Batchelor. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  3. R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena, John Wiley & Sons, New York, 1960.

    Google Scholar 

  4. B.D. Brown, C.G. Smith, and A.R. Rennie. Fabricating colloidal particles with photolithography and their interactions at an air-water interface. Phys. Rev. E, 63:016305, 2001.

    Article  Google Scholar 

  5. F. Bianchi, R. Ferrigno, and H.H. Girault. Finite element simulation of an electroosmotic-driven flowdivision at a T-junction of microscale dimensions. Anal. Chem., 72:1987, 2000.

    Article  Google Scholar 

  6. C.-H. Chen, H. Lin, S.K. Lele, and J.G. Santiago. Proceedings of ASME International Mechanical Engineering Congress. ASME, Washington IMECE2003-55007, 2003.

    Google Scholar 

  7. R. Cohen and C.J. Radke. Streaming potentials of nonuniformly charged surfaces. J. Colloid Interface Sci., 141:338, 1991.

    Article  Google Scholar 

  8. A. de Mello. Plastic fantastic? Lab-on-a-Chip, 2:31N, 2002.

    Article  Google Scholar 

  9. S.K. Dertinger, D.T. Chiu, N.L. Jeon, and G.M. Whitesides. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem., 73:1240, 2001.

    Article  Google Scholar 

  10. V. Dolnik, S. Liu, and S. Jovanovich. Capillary electrophoresis on microchip Electrophoresis, 21:41, 2000.

    Article  Google Scholar 

  11. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) Anal. Chem., 70:4974, 1998.

    Article  Google Scholar 

  12. P. Dutta and A. Beskok. Analytical solution of combined eloectoossmotic/pressure driven flows in two-dimensional straight channels: Finite debye layer effects. Anal. Chem., 73:5097, 2001.

    Article  Google Scholar 

  13. A.V. Elgersma, R.L.J. Zsom, L. Lyklema, and W. Norde. Adsoprtion competition between albumin and monoclonal immunogammaglobulins on polystyrene lattices. Coll. Sur., 65:17. 1992.

    Article  Google Scholar 

  14. D. Erickson and D. Li. Integrated microfluidic devices. Anal. Chimica Acta, 507:11, 2004.

    Article  Google Scholar 

  15. D. Erickson and D. Li. Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir, 19:5421, 2003.

    Article  Google Scholar 

  16. D. Erickson, D. Sinton, and D. Li. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab-on-a-Chip, 3:141, 2003a.

    Article  Google Scholar 

  17. D. Erickson, D. Li, and U.J. Krull. Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal. Biochem., 317:186, 2003b.

    Article  Google Scholar 

  18. D. Erickson and D. Li. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir, 18:1883, 2002a.

    Article  Google Scholar 

  19. D. Erickson and D. Li. Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir, 18:8949, 2002b.

    Article  Google Scholar 

  20. S.V. Ermakov, S.C. Jacobson, and J.M. Ramsey computer simulations of electrokinetic transport in micro-fabricated channel structures. Anal. Chem., 70:4494, 1998.

    Article  Google Scholar 

  21. G.J. Fiechtner and E.B. Cummings. Faceted design of channels for low-dispersion electrokinetic flows in microfluidic systems. Anal. Chem., 75:4747, 2003.

    Article  Google Scholar 

  22. D. Figeys and D. Pinto. Proteomics on a chip: Promising developments. Electrophoresis, 22:208, 2001.

    Article  Google Scholar 

  23. L.-M. Fu, R.-J. Yang, and G.-B. Lee. Analysis of geometry effects on band spreading of microchip elec-trophoresis. Electrophoresis, 23:602, 2002a.

    Article  Google Scholar 

  24. L.-M. Fu, R.-J. Yang, G.-B. Lee, and H.H. Liu. Electrokinetic injection techniques in microfluidic chips. Anal. Chem., 74:5084, 2002b.

    Article  Google Scholar 

  25. D.W. Fuerstenau. Streaming potential studies on quartz in solutions of aminium acetates in relation to the formation of hemimicelles at the quartz-solution interface. J. Phys. Chem., 60:981, 1956.

    Article  Google Scholar 

  26. V.K. Garg. In V.K. Garg (ed.). Applied Computational Fluid Dynamics, Marcel Dekker, New York, p. 35, 1998.

    Google Scholar 

  27. S.K. Griffiths and R.H. Nilson. Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal. Chem., 72:5473, 2000.

    Article  Google Scholar 

  28. N.G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E, 61:4011, 2000.

    Article  Google Scholar 

  29. R. Hayes, M. Böhmer, and L. Fokkink. A study of silica nanoparticle adsorption using optical reflectometry and streaming potential techniques. Langmuir, 15:2865, 1999.

    Article  Google Scholar 

  30. J.C. Heinrich and D.W. Pepper. Intermediate Finite Element Method, Taylor & Francis, Philadelphia, 1999.

    Google Scholar 

  31. J.D. Holladay, E.O. Jones, M. Phelps, and J. Hu. Microfuel processor for use in a miniature power supply J. Power Sources, 108:21, 2002.

    Article  Google Scholar 

  32. M.P. Hughes. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis, 23:2569, 2002.

    Article  Google Scholar 

  33. R.J. Hunter. Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London, 1981.

    Google Scholar 

  34. B. Jung, R. Bharadwaj, and J.G. Santiago. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis, 24:3476, 2003.

    Article  Google Scholar 

  35. H.J. Keh and J.L. Anderson. Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech., 153:417, 1985.

    Article  MATH  Google Scholar 

  36. N.A. Lacher, K.E. Garrison, R.S. Martin, and S.M. Lunte. Microchip capillary electrophore-sis/ electrochemistry. Electrophoresis, 22:2526, 2001.

    Article  Google Scholar 

  37. A.V. Lemoff and A.P. Lee. An AC magnetohydrodynamic micropump. Sens. Actu. B, 63:178, 2000.

    Article  Google Scholar 

  38. D. Li. Electro-viscous effects on pressure-driven liquid flow in microchannels. Coll. Surf. A, 195:35, 2001.

    Article  Google Scholar 

  39. J. Lyklema. Fundamentals of Interface and Colloid Science, Vol. 1: Fundamentals, Academic Press, London, 1991.

    Google Scholar 

  40. J. Lyklema. Fundamentals of Interface and Colloid Science, Vol. 2: Solid-Liquid Interfaces, Academic Press, London, 1995.

    Google Scholar 

  41. J. Masliyah. Electrokinetic Transport Phenomena. Alberta Oil Sands Technology and Research Authority, Edmonton, 1994a.

    Google Scholar 

  42. J. Masliyah. Salt rejection in a sinusoidal capillary tube. J. Coll. Int Sci., 166:383, 1994b.

    Article  Google Scholar 

  43. J.I. Molho, A.E. Herr, B.P. Mosier, J.G. Santiago, T.W. Kenny, R.A. Brennen, G.B. Gordon, and B. Moham-madi. Optimization of turn geometries for microchip electrophoresis. Anal. Chem., 73:1350, 2001.

    Article  Google Scholar 

  44. J.M.K. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 23:3461, 2002.

    Article  Google Scholar 

  45. W. Norde and E. Rouwendal. Streaming potential measurements as a tool to study protein adsorption-kinetics. J. Coll. Int. Sci., 139:169, 1990.

    Article  Google Scholar 

  46. M.H. Oddy, J.G. Santiago, and J.C. Mikkelsen. Electrokinetic instability micromixing. Anal. Chem., 73:5822, 2001.

    Article  Google Scholar 

  47. B.M. Paegel, R.G. Blazej, and R.A. Mathies. Microfluidic devices for DNA sequencing: Sample preparation and electrophoretic analysis. Curr. Opin. Biotechnol., 14:42, 2003.

    Article  Google Scholar 

  48. R. Panton. Incompressible Flow, John Wiley & Sons, New York, 1996.

    Google Scholar 

  49. N.A. Patankar and H.H. Hu. Numerical simulation of electroosmotic flow. Anal. Chem., 70:1870, 1998.

    Article  Google Scholar 

  50. S. Patankar, C. Liu, and E. Sparrow. Fully developed flow and heat-transfer in ducts having streamwise-periodic variations of cross-sectional area. J. Heat Trans., 99:180, 1977.

    Google Scholar 

  51. J.N. Reddy and D.K. Gartling. The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, 2001.

    Google Scholar 

  52. L. Ren and D. Li. Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients J. Colloid Intefrace Sci., 294:482, 2003.

    Google Scholar 

  53. A. Sáez and R. Carbonell. On the performance of quadrilateral finite-elements in the solution to the stokes equations in periodic structures. Int. J. Numer. Meth. Fluids, 5:601, 1985.

    Article  MATH  Google Scholar 

  54. D.A. Saville. Electrokinetic effects with small particles. Ann. Rev. Fluid Mech., 9:321, 1977.

    Article  Google Scholar 

  55. P. Selvaganapathy, Y.-S.L. Ki, P. Renaud, and C.H. Mastrangelo. Bubble-free electrokinetic pumping. J. Microelectromech. Syst., 11:448, 2002.

    Article  Google Scholar 

  56. A.D. Stroock, M. Weck, D.T. Chiu, W.T.S. Huck, P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides. Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett., 84:3314, 2000.

    Article  Google Scholar 

  57. V. Studer, A. PĂ©pin, Y. Chen, and A. Ajdari. Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelect. Eng., 61:915, 2002.

    Article  Google Scholar 

  58. P. Vanysek. In D.R. Lide (ed.). CRC Handbook of Chemistry and Physics, CRC Press, 2001.

    Google Scholar 

  59. B.H. Weigl, R.L. Bardell, and C.R. Cabrera. Lab-on-a-chip for drug development. Advan. Drug Del. Rev., 55:349, 2003.

    Article  Google Scholar 

  60. C. Werner and H.J. Jacobasch. Surface characterization of hemodialysis membranes based on electrokinetic measurements. Macromol. Symp., 103:43, 1996.

    Google Scholar 

  61. F.M White. Fluid Mechanics, McGraw-Hill, New York, 1994.

    Google Scholar 

  62. M. Zembala and P. DĂ©jardin. Streaming potential measurements related to fibrinogen adsorption onto silica capillaries. Coll. Surf. B, 3:119, 1994.

    Article  Google Scholar 

  63. M. Zembala and Z. Adamczyk. Measurements of streaming potential for mica covered by colloid particles. Langmuir, 16:1593, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Erickso, D., Li, D. (2006). Microscale Flow and Transport Simulation for Electrokinetic and Lab-on-Chip Applications. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics