Skip to main content

Engineering Biocompatible Quantum Dots for Ultrasensitive, Real-Time Biological Imaging and Detection

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Advances in the design of optical probes have played a central role in the emergence of photon-based microscopy techniques for biological imaging and detection [16]. These advances have led to the elucidation of the biological function and activity of many proteins, nucleic acids, and other molecules in living cells, tissues, and animals. Currently, the molecular architecture of greater than 70% of all optical probes consists of an “optical emitter” attached to a “targeting molecule” [4]. The targeting molecule directs the optical emitter to specific biological sites where the optical emitter can then be used to detect the activities of biomolecules. The most popular optical probes have been traditionally designed from organic-based molecules; for instance, probes for the imaging of cellular cytoskeleton are based on the conjugation of red-fluorescent molecule Texas Red to the small targeting organic molecule phalloidin (for labeling actin fibers) and green-fluorescent Alexa Fluor 488 to a recognition antibody (for labeling microtubules) [4]. Hundreds of different types of organic-based fluorescent probes are commercially available. These probes can be used in numerous applications, including the staining of DNA and proteins, detection of subtle differences in the ionic content in living cells, or detection of protein structures [4, 710]. Due to their complex molecular structures, however, organic fluorophores often exhibit unfavorable absorption and emission properties, such as photobleaching, environmental quenching, broad and asymmetric emission spectra, and the inability to excite multiple fluorophores of more than 2–3 colors at a single wavelength [10, 11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Y. Adams et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med., 8(8):891–897, 2002.

    Google Scholar 

  2. W.C.W. Chan et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opini. Biotechnol., 13:40–46, 2002.

    Article  Google Scholar 

  3. K.R. Gee et al. Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc., 124(5):776–778, 2002.

    Article  Google Scholar 

  4. R.P. Haugland. Handbook of Fluorescent Probes and Research Products, 9th Ed., Molecular Probes, Eugene, OR, pp. 966, 2002.

    Google Scholar 

  5. M. Roederer et al. 8 color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity. Cytometry, 29:328–339, 1997.

    Article  Google Scholar 

  6. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz. Single-Target Molecule Detection with Nonbleaching Multicolor Optical Immunolabels. Proceedings of the National Academy of Science, Vol. 97, no. 3, pp. 996–1001, 2000.

    Article  Google Scholar 

  7. M. Brasuel, R. Kopelman, T. Miller, R. Tjalkens, and M. A. Philbert. Fluorescent nanosensors for intracellular chemical analysis: Decyl methyacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal. Chem., 73:2221–2228, 2001.

    Article  Google Scholar 

  8. G. Gaietta, T.J. Deerinck, S.R. Adams, J. Bouwer, O. Tour, D.W. Laird, G.E. Sosinsky, R.Y. Tsien, and M.H. Ellisman. Multicolor and electron microscopic imaging of connexin trafficking. Science, 296:503–507, 2002.

    Article  Google Scholar 

  9. E.J. Park, M., Brasuel, C. Behrend, M.A. Philbert, and R. Kopelman. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem., 75:3784–3791, 2003.

    Article  Google Scholar 

  10. S. Weiss. Fluorescence spectroscopy of single biomolecules. Science, 283(5408):1676–1683, 1999.

    Article  Google Scholar 

  11. A. Waggoner. Covalent labeling of proteins and nucleic acids with fluorophores. Meth. Enzymol., 246:362–373, 1995.

    Article  Google Scholar 

  12. W.C. Chan et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 13(1):40–46, 2002.

    Article  Google Scholar 

  13. H. Mattoussi et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc., 122:12142–12150, 2000.

    Article  Google Scholar 

  14. R. Elghanian et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277(5329):1078–1081, 1997.

    Article  Google Scholar 

  15. A. Henglein. Small-particle research: physiochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 89:1861–1873, 1989.

    Article  Google Scholar 

  16. R. Rossetti, S. Nakahara, and L.E. Brus. Quantum size effects in the redox potentials, resonance raman spectra, and electronic spectra of CdS crystallites in aqueous solutions. J. Chem. Phys., 79:1086–1087, 1983.

    Article  Google Scholar 

  17. L.E. Brus. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem., 90:2555–2560, 1986.

    Article  Google Scholar 

  18. W.C. Chan and S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385):2016–2018, 1998.

    Article  Google Scholar 

  19. M. Bruchez, Jr. et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385):2013–2016, 1998.

    Article  Google Scholar 

  20. C.B. Murray, D.J. Norris, and M.G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc., 115:8706–8715, 1993.

    Article  Google Scholar 

  21. B.O. Dabbousi et al. (CdSe)ZnS Core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 101:9463–9475, 1997.

    Article  Google Scholar 

  22. M.A. Hines and P. Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. B, 100:468–471, 1996.

    Article  Google Scholar 

  23. X. Peng et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanoocrystals with photostability and electroni accessibility. J. Am. Chem. Soc., 119:7019–7029, 1997.

    Article  Google Scholar 

  24. M.L. Steigerwald, A.P. Alivisatos, J.M. Gibson, T.D. Harris, R. Kortan, A.J. Muller, A.M. Thayer, T.M. Duncan, D.C. Douglass, and L.E. Brus. Surface derivitization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc., 110:3046–3050, 1988.

    Article  Google Scholar 

  25. A.R. Kortan et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc., 112:1327–1332, 1990.

    Article  Google Scholar 

  26. C. Dameron et al. Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature, 338:596–597, 1989.

    Article  Google Scholar 

  27. A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L.E. Brus. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc., 112:1327–1332, 1990.

    Article  Google Scholar 

  28. A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271:933–937, 1996.

    Article  Google Scholar 

  29. M.A. Hines and P. Guyot-Sionnest. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B, 102(19), 1998.

    Google Scholar 

  30. I. Mekis et al. One-Pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “greener” chemical approaches. J. Phys. Chem. B, 107:7454–7462, 2003.

    Article  Google Scholar 

  31. V.K. LaMer and R.H. Dinegar. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc., 72(11):4847–4854, 1950.

    Article  Google Scholar 

  32. X. Peng, J. Wickham, and A.P. Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc., 120:5343–5344, 1998.

    Article  Google Scholar 

  33. Z.A. Peng and X. Peng. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as a precursor. J. Am. Chem. Soc., 123:183–184, 2001.

    Article  Google Scholar 

  34. L. Qu, Z.A. Peng, and X. Peng. Alternative routes toward high quality CdSe nanocrystals. Nanoletters, 1(6):333–337, 2001.

    Google Scholar 

  35. L. Qu and X. Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc., 124(9):2049–2055, 2002.

    Article  Google Scholar 

  36. L. Manna, D. Milliron, J., A. Meisel, E.C. Scher, and A.P. Alivisatos. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mat., 2:382–385, 2003.

    Article  Google Scholar 

  37. S. Khan, T. Mokari, E. Rothenberg, and U. Banin. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mat., 2:155–159, 2003.

    Article  Google Scholar 

  38. E.M. Chan, R.A. Mathies, and A.P. Alivisatos. Size-controlled growth of CdSe nanocrystals in microfluidic reactors.Nano Lett., 3:199–201, 2003.

    Article  Google Scholar 

  39. R.E. Bailey and S. Nie. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc.

    Google Scholar 

  40. B. Dubertret et al. In Vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298:1759–1762, 2002.

    Article  Google Scholar 

  41. X. Wu, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 21:41–46, 2003.

    Article  Google Scholar 

  42. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, and J.V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22(1):93–98, 2004.

    Article  Google Scholar 

  43. S Kim and M.G. Bawendi. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc., 125:14652–14653, 2003.

    Article  Google Scholar 

  44. B. Dubertret, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298:1759–1762, 2002.

    Article  Google Scholar 

  45. W. Jiang, S. Mardyani, H. Fischer, and W.C.W. Chan. Large scale surface modification of TOPO-coated quantum dots for biological applications. Submitted.

    Google Scholar 

  46. G.T. Hermanson. Bioconjugate Techniques. Academic Press, Toronto, ON.

    Google Scholar 

  47. H. Mattoussi et al. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. Physica Stat. Solidi (b), 244(1):277–283, 2001.

    Article  Google Scholar 

  48. I.L. Medintz et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mat., 2:630–638, 2003.

    Article  Google Scholar 

  49. J.M. Ness, R.S. Akhtar, C.B. Latham, K.A. Roth. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J. Histochem. Cytochem., 51:981–987, 2003.

    Google Scholar 

  50. R. Nisman, G. Dellaire, Y. Ren, R. Li, and D.P. Bazett-Jones. Applications of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem., 52:13–18, 2004.

    Google Scholar 

  51. M.H. Qureshi, J.C. Yeung, S. Wu, and S. Wong. Development and characterization of a series of soluble tetrameric and monomeric streptavidin muteins with differential biotin binding affinities. J. Biolog. Chem., 276:46422–46428, 2001.

    Article  Google Scholar 

  52. A.P. Alivisatos. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 100:13226–13239, 1996.

    Article  Google Scholar 

  53. D. Gerion et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B, 105:8861–8871, 2001.

    Article  Google Scholar 

  54. A. Striolo, J. Ward, J.M. Prausnitz, W.J. Parak, D. Zanchet, D. Gerion, D. Milliron, and A.P. Alivisatos. Molecular weight, osmotic second virial coefficeint, and extinction coefficient of colloidal CdSe nanocrystals. J. Phys. Chem. B, 106:5500–5505, 2002.

    Article  Google Scholar 

  55. C.A. Leatherdale, W.K. Woo, F.V. Mikulec, and M.G. Bawendi. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B, 106:7619–7622, 2002.

    Article  Google Scholar 

  56. W.W. Yu, L. Qu, W. Guo, and X. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat., 15:2854–2860, 2003.

    Article  Google Scholar 

  57. J.K. Jaiswal et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates.[comment]. Nat. Biotechnol., 21(1):47–51, 2003.

    Article  Google Scholar 

  58. W.C.W. Chan. Semiconductor Quantum Dots for Ultrasensitive Biological Imaging and Detection, in Chemistry. Indiana University, Bloomington. p. 153, 2001.

    Google Scholar 

  59. W. Van Sark et.al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by roomtemperature time-resolved spectroscopy. J. Phys. Chem. B, 105:8281–8284, 2001.

    Article  Google Scholar 

  60. A. Derfus, W.C.W. Chan, and S. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 4(1):11–18, 2004.

    Article  Google Scholar 

  61. G.P. Mitchell, C.A. MIrkin, and R.L. Letsinger. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc., 121:8122–8123, 1999.

    Article  Google Scholar 

  62. L. Zhu, S. Ang, and W. Liu. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl. Environment. Microbiol., 70:597–598, 2004.

    Article  Google Scholar 

  63. S. Pathak, S.K. Choi, N. Arnheim, and M.E. Thompson. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 123:4103–4104, 2001.

    Article  Google Scholar 

  64. Y. Xiao and P.E. Barker. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res., 32:1–5, 2004.

    Article  Google Scholar 

  65. F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin, and I. WIllner. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc., 125:13918–13919, 2003.

    Article  Google Scholar 

  66. E.R. Goldman, G.P. Anderson, P. T. Tran, H. Mattoussi, P.T. Charles, and M. Mauro. Conjugation of luminescent quantum dots with anitbodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem., 74:841–847, 2002.

    Article  Google Scholar 

  67. E.R. Goldman, A.R. Clapp, G.P. Anderson, H.T. Uyeda, J.M. Mauro, I.L. Medintz, and H. Mattoussi. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem., 76:684–688, 2004.

    Article  Google Scholar 

  68. X. Gao and S. Nie. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal. Chem., 76:2406–2410, 2004.

    Article  Google Scholar 

  69. X. Gao, W.C. Chan, and S. Nie. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt., 7(4):532–537, 2002.

    Article  Google Scholar 

  70. M. Han, X. Gao, J.Z. Su, and S. Nie. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 19:631–635, 2001.

    Article  Google Scholar 

  71. M. Dahan et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302:442–445, 2003.

    Article  Google Scholar 

  72. A. Mansson et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophy. Res. Commun., 314:529–534, 2004.

    Article  Google Scholar 

  73. W. Parak, R. Boudreau, M.L. Gros, D. Gerion, D. Zanchet, C.M. MIcheel, S. Willimas, A.P. Alivastos, and C. Larabell. Cell motility and metastatic potential studies based on quantum dot imaging and phagokinetic tracts. Adv. Mat., 14:882–885, 2002.

    Article  Google Scholar 

  74. T. Pellegrino, W. Parak, J., R. Boudreau, M. Le Gros, D. Gerion, A. P. Alivisatos, and C. Larabel. Quantum dot-based cell motility assay. Differentiation, 71:542–548, 2003.

    Article  Google Scholar 

  75. R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol., 19:316–317, 2001.

    Article  Google Scholar 

  76. Y.T. Lim et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag., 2(1):50–64, 2003.

    Article  Google Scholar 

  77. W. Jiang, E. Papa, H. Fischer, S. Mardyani, and W.C.W. Chan. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol., 22:607–609, 2004.

    Article  Google Scholar 

  78. M.E. Akerman et al. Nanocrystal Targeting In Vivo. Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, no. 20, pp. 12617–12621, 2002.

    Article  Google Scholar 

  79. E. Ruoslahti. Specialization of tumor vasculature. Nat. Rev. Cancer, 21:84–90, 2002.

    Google Scholar 

  80. A. Derfus, W.C.W. Chan, and S. Bhatia. Intracellular delivery of semiconductor quantum dots. Adv. Mat., 16:961–966, 2004.

    Article  Google Scholar 

  81. F. Chen and D. Gerion. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term nontoxic imaging and nuclear targeting in living cells. Nano Letters, 4:1827–1832, 2004.

    Article  Google Scholar 

  82. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 22:969–976, 2004.

    Article  Google Scholar 

  83. R.K. Jain and M. Stroh. Zooming in and out with quantum dots. Nat. Biotechnol., 22:959–960, 2004.

    Article  Google Scholar 

  84. R. Bakalova, H. Ohba, Z. Zhelev, T. Nagase, R. Jose, M. Ishikawa, and Y. Baba, Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nanoletters, ASAP, 2004.

    Google Scholar 

  85. A.C. Sarmia, X. Chen, and C. Burda. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc., 125:15736–15737, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Jiang, W., Singhal, A., Fischer, H., Mardyani, S., Chan, W.C.W. (2006). Engineering Biocompatible Quantum Dots for Ultrasensitive, Real-Time Biological Imaging and Detection. In: Ferrari, M., Desai, T., Bhatia, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25844-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25844-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25565-1

  • Online ISBN: 978-0-387-25844-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics