Skip to main content

Vascular Zip Codes and Nanoparticle Targeting

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

The use of nanoparticles in medicine will require sensors that can serve as guidance molecules for targeting the particles to appropriate sites in the body. Another set of sensors will be needed to allow the particles to respond to features at the target, such as inflammation, cell death, etc. Compounds that target the vascular endothelium provide one answer to the guidance and sensing problems. The endothelium of blood vessels is readily accessible from the blood stream, and the vessels in different tissues carry unique molecular signatures. Pathological lesions also put their signature on the vasculature; in tumors, both blood and lymphatic vessels differ from normal vessels. Peptides and antibodies that recognize vascular signatures have been shown to be useful in directing therapeutic agents to targets such as tumors. The targeting can enhance the efficacy of the therapy while reducing side effects. Combining the targeting technology with nanoparticles can take us a step closer to truly smart nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Alitalo and P. Carmeliet. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 1:219–227, 2002.

    Article  Google Scholar 

  2. M.E. Akerman, W.C. Chan, P. Laakkonen, S.N. Bhatia, and E. Ruoslahti. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A., 99:12617–12621, 2002.

    Article  Google Scholar 

  3. W. Arap, W. Haedicke, M. Bernasconi,, R. Kain, D. Rajotte, S. Krajewski, H.M. Ellerby, D.E. Bredesen, R. Pasqualini, and E. Ruoslahti. Targeting the prostate for destruction through a vascular address. Proc. Natl. Acad. Sci. U.S.A., 99:1527–1531, 2002.

    Article  Google Scholar 

  4. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279:377–380, 1998.

    Article  Google Scholar 

  5. P.J. Bates, J.B. Kahlon, S.D. Thomas, Trent, and D.M. Millet. Antiproliferative activity of G-rich Oligonucleotides correlates with protein binding. J.Biol.Chem., 274:26369–26377, 1999.

    Article  Google Scholar 

  6. D.M. Brown, M. Pellecchia, and E. Ruoslahti. Drug identification through in vivo screening of chemical libraries. ChemBioChemistry, 5:871–875.

    Google Scholar 

  7. D. Brown, and E. Ruoslahti. Metadherin, a novel cell-surface protein in breast tumors that mediates lung metastasis. Cancer Cell, 5:365–374, 2004.

    Article  Google Scholar 

  8. S. Christian, J. Pilch, K. Porkka, P. Laakkonen, and E. Ruoslahti. Nucleoilin expressed at the cell surface is a marker of endothelial cells in tumor blood vessels. J. Cell. Biol., 163:871–878, 2003.

    Article  Google Scholar 

  9. F. Curnis, A. Sacchi, L. Borgna, F. Magni, A. Gasparri, and A. Corti. Enhancement of tumor necrosis factor antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nature Biotech., 18:1185–1190, 2000.

    Article  Google Scholar 

  10. F. Curnis, G. Arrigoni, A. Sacchi, L. Fischetti, W. Arap, R. Pasqualini, and A. Corti. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res., 62:867–874, 2002.

    Google Scholar 

  11. A.M. Derfus, W.C. Chan, and S.N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4:11–18, 2004.

    Article  Google Scholar 

  12. A.M. Derfus, W.C Chan, and S.N. Bhatia, Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mat. published online 5/19/04, 2004.

    Google Scholar 

  13. B.S. Ding, Y.J. Zhou, X. Y. Chen, J. Zhang, P.X. Zhang, Z. Y. Sun, X. Y. Tan, and J. N. Liu. Lung endothelium targeting for pulmonary embolism thrombolysis. Circulation, 108:2892–2898, 2003.

    Article  Google Scholar 

  14. Ellerby, W. Arap, L.M. Ellerby, R. Kain, R. Andrusiak, G. D. Rio, S. Krajewski, C. R. Lombardo, R., Rao, E. Ruoslahti. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med., 5:1032–1038, 1999.

    Article  Google Scholar 

  15. B.P. Eliceiri and D.A. Cheresh. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest., 103:1227–1230, 1999.

    Article  Google Scholar 

  16. B.P. Eliceiri and D.A. Cheresh. Adhesion events in angiogenesis. Curr. Opini. Cell Biol., 13:563–568, 2001.

    Article  Google Scholar 

  17. M. Essler and E. Ruoslahti. Molecular specialization of breast vasculature: a breast-homing phagedisplayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. U.S.A., 99:2252–2257, 2002.

    Article  Google Scholar 

  18. M.N. Fukuda, C. Ohyama, K. Lowitz, O. Matsuo, R. Pasqualini, E., Ruoslahti, and M. Fukuda. Apeptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res., 60:450–456, 2000.

    Google Scholar 

  19. D.M. Gerlag, E. Borges, P.P. Tak, H.M. Ellerby, D.E., Bredesen, R. Pasqualini, E. Ruoslahti, and G.S. Firestein. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arth. Res., 3:357–361, 2001.

    Article  Google Scholar 

  20. C. Halin, S. Rondini, F. Nilsson, A. Berndt, H. Kosmehl, L. Zardi, and D. Neri. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol., 20:264–269, 2002.

    Article  Google Scholar 

  21. Y.S. Haviv, J.L. Blackwell, A. Kanerva, P. Nagi, V. Krasnykh, I. Dmitriev, M. Wang, S. Naito, X. Lei, A. Hemminki, et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res., 62:4273–4281, 2002.

    Google Scholar 

  22. J.A. Hoffman, E. Giraudo M. Singh, M. Inoue, K. Porkka, D. Hanahan, and E. Ruoslahti. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell, 4:383–391, 2003.

    Article  Google Scholar 

  23. J. D. Hood, M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science, 296:2404–2407, 2002.

    Article  Google Scholar 

  24. P. Houston, J. Goodman, A. Lewis, C. J. Campbell, and M. Braddock. Homing markers for atherosclerosis: applications for drug delivery, gene delivery and vascular imaging. FEBS Lett., 492:73–77, 2001.

    Article  Google Scholar 

  25. R.C. Johnson, D. Zhu, H.G. Augustin-Voss, and B.U. Pauli. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung metastatic rat breast and prostate carcinoma cells. J. Cell Biol., 121:1423–1432, 1993.

    Article  Google Scholar 

  26. J.A. Joyce, P. Laakkonen, M. Bernasconi, G. Bergers, E. Ruoslahti, and D. Hanahan. Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell, 4:393–403, 2003.

    Article  Google Scholar 

  27. S. Kim, K. Bell, S.A. Mousa, and J.A. Varner. A regulation of angiogenesis in vivo by ligation of integrin α5Β1 with the central cell-binding domain of fibronectin. Am. J. Pathol., 156:1345–1362, 2000.

    Google Scholar 

  28. P. Laakkonen, K. Porkka, J.A. Hoffman, and E. Ruoslahti. A tumor-homing peptide with a lymphatic vesselrelated targeting specificity. Nat. Med., 8:743–751, 2002.

    Article  Google Scholar 

  29. P. Laakkonen, M.E. Akerman, H. Biliran, M. Yang, F. Ferrer, T. Karpanen, R.M. Hoffman, and E. Ruoslathi. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. U.S.A., 2004.

    Google Scholar 

  30. ü. Langel. Cell-Penetrating Peptides: Processes and Applications. Boca Raton, Florida, CRC Press, 2003.

    Google Scholar 

  31. G.M. Lanza and S.A. Wickline. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr. Prob. Cardiol., 28:625–653, 2003.

    Article  Google Scholar 

  32. D.P. McIntosh, X.Y. Tan, P. Oh, and J. E. Schnitzer. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl. Acad. Sci. U.S.A., 99:1996–2001, 2002.

    Article  Google Scholar 

  33. R. Pasqualini and E. Ruoslahti. Organ targeting in vivo using phage display peptide libraries. Nature, 380:364–366, 1996.

    Article  Google Scholar 

  34. R. Pasqualini, E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res., 60:722–727, 2000.

    Google Scholar 

  35. K. Porkka, P. Laakkonen, J.A. Hoffman, M. Bernasconi, and E. Ruoslahti. Targeting of peptides to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc. Natl. Acad. Sci. U.S.A., 99:7444–7449, 2002.

    Article  Google Scholar 

  36. D. Rajotte and E. Ruoslahti. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem., 274:11593–11598, 1999.

    Article  Google Scholar 

  37. E. Ruoslahti. Specialization of tumour vasculature. Nat. Rev. Cancer, 2:83–90, 2002.

    Article  Google Scholar 

  38. E. Ruoslahti, RGD story: A personal account. A landmark essay. Matrix Biol., 22:459–465, 2003.

    Article  Google Scholar 

  39. E. Ruoslahti and D. Rajotte. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol., 18:813–827, 2000.

    Article  Google Scholar 

  40. T.J. Wickham. Targeting adenovirus. Gene Ther., 7:110–114, 2000.

    Article  Google Scholar 

  41. P.M. Winter, S.D. Caruthers, A. Kassner, T.D. Harris, L.K. Chinen, J.S. Allen, E.K. Lacy, H. Zhang, J.D. Robertson, S.A. Wickline, and G.M. Lanza. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res., 63:5838–5843, 2003.

    Google Scholar 

  42. L. Zhang, J.A. Hoffman, and E. Ruoslahti. Molecular profiling of heart endothelial cell. Circulation, (In press) 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ruoslahti, E. (2006). Vascular Zip Codes and Nanoparticle Targeting. In: Ferrari, M., Desai, T., Bhatia, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25844-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25844-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25565-1

  • Online ISBN: 978-0-387-25844-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics