Skip to main content

Supported Lipid Bilayers as Mimics for Cell Surfaces and as Tools in Biotechnology

  • Chapter
  • 1234 Accesses

Abstract

The phospholipid bilayer is a universal molecular architecture that is shared by all cell membranes. The canonical vision of this material is a fluid mosaic [1] of proteins, lipids, and cholesterol that exhibits both a high degree of lateral fluidity and heterogeneity [2, 3]. There is widespread evidence for miscibility phase separation in membranes [46]. The membrane thus consists of a nanoemulsion of two-dimensional phase domains, often referred to as rafts, which are dynamic entities populated with distinctive and changing sets of proteins. The localization and cooperative arrangement of membrane components, especially in the 1–1000nmsize range, is broadly implicated in many facets of cell membrane function. There is tremendous interest, both from academy and industry, in membrane lateral structure and the way it regulates the activity of constituent membrane proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Singer and G.L. Nicolson. The fluid mosaic model of cell membranes. Science, 175:720–731, 1972.

    Article  Google Scholar 

  2. K. Jacobson, E.D. Sheets, and R. Simson. Revisiting the fluid mosaic model of membranes. Science, 268:1441–1442, 1995.

    Article  Google Scholar 

  3. R.G.W. Anderson and K. Jacobson. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science, 296:1821–1825, 2002.

    Article  Google Scholar 

  4. K. Simmons and E. Ikonen. Functional rafts in cell membranes. Nature, 387:569–572, 1997.

    Article  Google Scholar 

  5. H.M. McConnell and M. Vrljic. Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct., 32:469–492, 2003.

    Article  Google Scholar 

  6. S.L. Veatch and S.L. Keller. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett., 89(26):268101, 2002.

    Article  Google Scholar 

  7. A.A. Brian and H.M. McConnell. Allogenic stimulation of cytoxic T cells by supported planar membranes. Proc. Natl. Acad. Sci. U.S.A., 81:6159–6163, 1984.

    Article  Google Scholar 

  8. E. Sackmann Supported membranes: Scientific and practical applications. Science, 271:43–48, 1996.

    Article  Google Scholar 

  9. E. Sackmann and M. Tanaka. Supported membranes on soft polymer cusions: fabrication, characterization, and applications. TIBTECH, 18:58–64, 2000.

    Google Scholar 

  10. A. Grakoui et al. The immunological synapse: A molecular machine controlling T cell activation. Science, 285:221–227, 1999.

    Article  Google Scholar 

  11. J.T. Groves and M.L. Dustin. Supported planar bilayers in studies of immune cell adhesion and communication. J. Immunol. Methods, 278:19–32, 2003.

    Article  Google Scholar 

  12. J.T. Groves and S.G. Boxer. Micropattern formation in supported lipid membranes. Acc. Chem. Res., 35:149–157, 2002.

    Article  Google Scholar 

  13. J.T. Groves. Membrane array technology for drug discovery. Curr. Op. Drug Disc. Dev., 5(4):606–612, 2002.

    Google Scholar 

  14. Bray, M.D. Levin, and C.J. Morton-Firth. Receptor clustering as a cellular mechanism to control sensitivity. Nature, 393(7):85–88, 1998.

    Article  Google Scholar 

  15. G. Maheshwari et al. Cell adhesion and motility depend on nanoscaleRGDclustering. J. Cell Sci., 113:1677–1686, 2000.

    Google Scholar 

  16. J.E. Gestwicki and L.L. Kiessling. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature, 415(3):81–84, 2002.

    Article  Google Scholar 

  17. P.A. vanderMerwe and S.J. Davis. The immunological synapse—a multitasking system. Science, 295:1479–1480, 2002.

    Article  Google Scholar 

  18. C. Dietrich et al. Lipid rafts reconstituted into model membranes. Biophys. J., 80:1417–1428, 2001.

    Article  Google Scholar 

  19. Y. Kaizuka and J.T. Groves. Structure and dynamics of supported intermembrane junctions. Biophys. J., 86:905–912, 2004.

    Article  Google Scholar 

  20. C. Dietrich et al. Partitioning of Thy-1, GM1, and cross-linked phsopholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. U.S.A., 98(19):10642–10647, 2001.

    Article  Google Scholar 

  21. M. Stelzle, R. Miehlich, and E. Sackmann. Two-dimensional microelectrophoresis in supported lipid bilayers. Biophys. J., 63:1346–1354, 1992.

    Article  Google Scholar 

  22. J.T. Groves and S.G. Boxer. Electric field-induced concentration gradients in planar supported bilayers. Biophys. J., 69:1972–1975, 1995.

    Article  Google Scholar 

  23. J.T. Groves, C. Wülfing, and S.G. Boxer. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys. J., 71:2716–2723, 1996.

    Article  Google Scholar 

  24. J.T. Groves, S.G. Boxer, and H.M. McConnell. Electric field-induced reorganization of two-component supported bilayer membranes. Proc. Natl. Acad. Sci. U.S.A., 94:13390–13395, 1997.

    Article  Google Scholar 

  25. J.T. Groves, S.G. Boxer, and H.M. McConnell. Electric field-induced critical demixing in lipid bilayer membranes. Proc. Natl. Acad. Sci. U.S.A., 95:935–938, 1998.

    Article  Google Scholar 

  26. A. van Oudenaarden and S.G. Boxer. Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science, 285:1046–1048, 1999.

    Article  Google Scholar 

  27. D. Axelrod et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J., 16:1055–1069, 1976.

    Article  Google Scholar 

  28. L.K. Tamm and E. Kalb. Microspectrofluoremetry of supported planar membranes. In S.G. Schulman (ed.), Molecular Luminescence Spectroscopy. John Wiley & Sons Inc., pp. 253–305, 1993.

    Google Scholar 

  29. J. Salafsky, J.T. Groves, and S.G. Boxer. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry, 35:14773–14781, 1996.

    Article  Google Scholar 

  30. D. Magde, E. Elson, and W.W. Webb. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett., 29(11):705–708, 1972.

    Article  Google Scholar 

  31. K. Bacia and P. Schwille. A dynamic view of cellular processes by in vivo fluorescence auto and crosscorrelation spectroscopy. Methods, 29:74–85, 2003.

    Article  Google Scholar 

  32. E. Haustein and P. Schwille. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods, 29:153–166, 2003.

    Article  Google Scholar 

  33. N. Kahya et al. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem., 278:28109–28115, 2003.

    Article  Google Scholar 

  34. J. Korlach et al. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 96:8461–8466, 1999.

    Article  Google Scholar 

  35. P. Schwille, J. Korlach, and W.W. Webb. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry, 36:176–182, 1999.

    Article  Google Scholar 

  36. E.D. Sheets, R. Simson, and K. Jacobson. New insights into membrane dynamics from analysis of cell surface interactions by physical methods. Curr. Op. Cell Biol., 7:707–714, 1995.

    Article  Google Scholar 

  37. M. Vrljic et al. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J., 83:2681–2692, 2002.

    Article  Google Scholar 

  38. C. Dietrich et al. Relationship of lipid rants to transient confinement zones detected by single particle tracking. Biophys. J., 82:274–284, 2002.

    Article  Google Scholar 

  39. M.J. Saxton and K. Jacobson. Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 26:373–399, 1997.

    Article  Google Scholar 

  40. B.L. Stottrup, S.L. Veatch, and S.L. Keller. Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys. J., 86:2942–2950, 2004.

    Article  Google Scholar 

  41. J.M. Crane and L.K. Tamm. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J., 86:2965–2979, 2004.

    Article  Google Scholar 

  42. M. Kühner, R. Tampé, and E. Sackmann. Lipid mono and bilayer supported on polymer films: composite polymer films on solid substrates. Biophys. J., 67:217–226, 1994.

    Article  Google Scholar 

  43. J.Y. Wong et al. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry. Biophys. J., 77:1445–1457, 1999.

    Article  Google Scholar 

  44. J.Y. Wong et al. Polymer-cusioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys. J., 77:1458–1468, 1999.

    Article  Google Scholar 

  45. G. Elander, M. Kühner, and E. sackmann. Functionalization of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosens. Bioelectro., 11(6/7):565–577, 1996.

    Article  Google Scholar 

  46. H. Sigl et al. Assembly of polymer/lipid composite films on solids based on hairy rod LB-films. Eur. Biophys. J., 25:249–259, 1997.

    Article  Google Scholar 

  47. H. Hillebrandt et al. High electric resistance polymer/lipid composite films on indium-tin-oxide electrodes. Langmuir, 15(24):8451–8459, 1999.

    Article  Google Scholar 

  48. F. Rehfeldt and M. Tanaka. Hydration forces in ultrthin films of cellulose. Langmuir, 19:1467–1473, 2003.

    Article  Google Scholar 

  49. T. Baumgart and A. OffenhÄusser. Polysaccharide-supported planar bilayer lipid model membranes. Langmuir, 19(5):1730–1737, 2003.

    Article  Google Scholar 

  50. K. Sengupta et al. Mimicking tissue surfaces by supported membrane coupled ultrathin layer of hyaluronic acid. Langmuir, 19(5):1775–1781, 2003.

    Article  Google Scholar 

  51. M.L. Wagner and L.K. Tamm. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J., 79:1400–1414, 2000.

    Article  Google Scholar 

  52. W.W. Shen et al. Polymer-supported lipid bilayers on benzophenone-modified substrates. Biomacromolecules, 2:70–79, 2001.

    Article  Google Scholar 

  53. C. Naumann et al. The polymer-supported phospholipid bilayer: tethering as a new approach to substratemembrane stabilization. Biomacromolecules, 3:27–35, 2002.

    Article  Google Scholar 

  54. A. Berquand et al. Two-step formation of streptavidin-supported lipid bilayers by PEG-triggered vesicle fusion. Fluorescence and atomic force microscopy characterization. Langmuir, 19(5):1700–1707, 2003.

    Article  Google Scholar 

  55. B.A. Cornell et al. A biosensor that uses ion-channel switches. Nature, 387:580–583, 1997.

    Article  Google Scholar 

  56. B. Raguse et al. Tethered lipid bilayer membranes: formation and ionic reservoir characterization. Langmuir, 14:648–659, 1998.

    Article  Google Scholar 

  57. C. Bieri et al. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nature Biotech., 17:1105–1108, 1999.

    Article  Google Scholar 

  58. V. Kiessling and L.K. Tamm. Measuring distances in supported bilayers by fluorescence interferencecontrast miscroscopy: polymer supports and SNARE proteins. Biophys. J., 84:408–418, 2003.

    Article  Google Scholar 

  59. A.P. Wong and J.T. Groves. Topographical imaging of an inter-membrane junction by combined fluorescene interference and energy transfer microscopies. J. Am. Chem. Soc., 123:12414–12415, 2001.

    Article  Google Scholar 

  60. A.P. Wong and J.T. Groves. Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A., 99(22):14147.

    Google Scholar 

  61. T. Charitat et al. Adsorbed and free lipid bilayers at the solid-liquid interface. Eur. Phys. J. B, 8:583–593, 1999.

    Article  Google Scholar 

  62. G. Fragneto et al. A fluid floating bilayer. Europhys. Lett., 53:100–106, 2001.

    Article  Google Scholar 

  63. R. Parthasarathy et al. Nonequilibrium adhesion patterns at lipid bilayer junctions. J. Phys. Chem. B, 108:649–657, 2004.

    Article  Google Scholar 

  64. A. Lambacher and P. Fromherz. Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A, 63:207–216, 1996.

    Article  Google Scholar 

  65. A. Lambacher and P. Fromherz. Luminescence of dye molecules on oxidized silicon and fluorescence ineterference contrast microscopy of biomembranes. J. Opt. Soc. Am. B, 19(6):1435–1453, 2002.

    Article  Google Scholar 

  66. J. RÄdler and E. Sackmann. Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J. Phys. II France, 3:727–748, 1993.

    Article  Google Scholar 

  67. J.O. RÄdler et al. Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. Phys. Rev. E, 51(5):4526–4536, 1995.

    Article  Google Scholar 

  68. R. Hirn et al. Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferomtery. Faraday Discuss., 111:17–30, 1998.

    Article  Google Scholar 

  69. R. Parthasarathy and J.T. Groves. Optical techniques for imaging membrane topography. Cell Biochem. Biophys., 2004. (in press.)

    Google Scholar 

  70. R. Lipowsky and E. Sackmann (eds.). Structure and dynamics of membranes. In Handbook of Biological Physics. Vol. 1, Elsevier Science Ltd., New York, 1995.

    Google Scholar 

  71. L.K. Tamm and H.M. McConnell. Supported phospholipid bilayers. Biophys. J., 47:105–113, 1985.

    Article  Google Scholar 

  72. J. RÄdler, H. Strey, and E. Sackmann. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir, 11:4539–4548, 1995.

    Article  Google Scholar 

  73. O.P. Karlsson and S. Löfås. Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors. Anal. Biochem., 300:132–138, 2002.

    Article  Google Scholar 

  74. J.T. Groves, N. Ulman, and S.G. Boxer. Micropatterning fluid lipid bilayers on solid supports. Science, 275:651–653, 1997.

    Article  Google Scholar 

  75. L.A. Kung et al. Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir, 16:6773–6776, 2000.

    Article  Google Scholar 

  76. C.A. Keller et al. Formation of supported membranes from vesicles. Phys. Rev. Lett., 84(23):5443–5446, 2000.

    Article  Google Scholar 

  77. C.A. Keller and B. Kasemo. Surface specific kinetics of lipid vesicle adsorprion measured with a quartz crystal microbalance. Biophys. J., 75:1397–1402, 1998.

    Article  Google Scholar 

  78. E. Reimhult, F. HÄÄk, and B. Kasemo. Intact vesicle adsorption and supported biomembrane formation from vesicles in slution: Influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir, 19(5):1681–1691, 2003.

    Article  Google Scholar 

  79. S.G. Boxer, N. Ulman, and J.T. Groves. Arrays of independently-addressable supported fluid bilayer membranes. The Board of Trustees of the Leland Stanford Junior University, United States, 2001.

    Google Scholar 

  80. L. Kung et al. Printing via photolithography on micropartitioned fluid lipid membranes. Adv. Mater., 12(10):731–734, 2000.

    Article  Google Scholar 

  81. J.S. Hovis and S.G. Boxer. Patterned barriers to lateral diffusion in supported lipid bilayer membranes by blotting and stamping. Langmuir, 16:894–897, 2000.

    Article  Google Scholar 

  82. J.S. Hovis and S.G. Boxer. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir, 17:3400–3405, 2001.

    Article  Google Scholar 

  83. P.S. Cremer and T. Yang. Creating spatially addressed arrays of planar supported fluid phospholipid membranes. J. Am. Chem. Soc., 121:8130–8131, 1999.

    Article  Google Scholar 

  84. J.T. Groves, L.K. Mahal, and C.R. Bertozzi. Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir, 17(17):5129–5133, 2001.

    Article  Google Scholar 

  85. J.S. Bonifacino and B.S. Glick. The mechanisms of vesicle budding and fusion. Cell, 116:153–166, 2004.

    Article  Google Scholar 

  86. A.R. Sapuri, M.M. Baksh, and J.T. Groves. Electrostatically-targeted intermembrane lipid exchange with micropatterned supported membranes. Langmuir, 19(5):1606–1610, 2003.

    Article  Google Scholar 

  87. R.N. Orth et al. Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir, 19:1599–1605, 2003.

    Article  Google Scholar 

  88. L. Kam and S.G. Boxer. Formation of supported lipid bilayer composition arrays by controlled mixing and surface capture. J. Am. Chem. Soc., 122:12901–12902, 2000.

    Article  Google Scholar 

  89. L. Kam and S.G. Boxer. Spatially selective manipulation of supported lipid bilayers by laminar flow: steps toward biomembrane microfluidics. Langmuir, 19:1624–1631, 2003.

    Article  Google Scholar 

  90. T. Yang et al. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal. Chem., 73:165–169, 2001.

    Article  Google Scholar 

  91. T. Thorsen, S.J. Maerkl, and S.R. Quake. Microfluidic large-scale integration. Science, 298:580–584, 2002.

    Article  Google Scholar 

  92. Y. Fang, J. Lahiri, and L. Picard. G protein-coupled receptor microarrays for drug discovery. DDT, 8(16):755–761, 2003.

    Google Scholar 

  93. S.P.A. Fodor et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 251:767–773, 1991.

    Article  Google Scholar 

  94. G. MacBeath and S.L. Schreiber. Printing proteins as microarrays for high-throughput function determination. Science, 289:1760–1763, 2000.

    Google Scholar 

  95. P. Mitchell. A perspective on protein arrays. Nature Biotech., 20:225–229, 2002.

    Article  Google Scholar 

  96. P. Wagner and R. Kim. Protein biochips: an emerging tool for proteomics research. Curr. Drug Disc., May 23–28, 2002.

    Google Scholar 

  97. T. Haga and G. Berstein (eds.). G-protein Coupled Receptors. CRC Press, Boca Raton, 1999.

    Google Scholar 

  98. Y. Fang, A.G. Frutos, and J. Lahiri. Membrane Protein Microarrays. J. Am. Chem. Soc., 124(11):2394–2395, 2002.

    Article  Google Scholar 

  99. T. Yang et al. Investigations of bivalent antibody binding on fluid-supported phospholipid membranes: the effect of hapten density. J. Am. Chem. Soc., 125:4779–4784, 2003.

    Article  Google Scholar 

  100. T.M. Bayerl and M. Bloom. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. Biophys. J., 58:357–362, 1990.

    Article  Google Scholar 

  101. T. Buranda et al. Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology. Langmuir, 19:1654–1663, 2003.

    Article  Google Scholar 

  102. A. Loidl-Stahlhofen et al. Solid-supported biomolecules on modified silica surfaces—A tool for fast physicochemical characterization and high-throughput screening. Adv. Mater., 13(23):1829–1834, 2001.

    Article  Google Scholar 

  103. T.M. Bayerl. A glass bead game. Nature, 427:105, 2004.

    Article  Google Scholar 

  104. M.M. Baksh, M. Jaros, and J.T. Groves. Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature, 427:139–141, 2004.

    Article  Google Scholar 

  105. B. Sackmann and E. Neher. Plenum Press, New York, 1985.

    Google Scholar 

  106. P. Mustonen et al. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry, 26:2991–2997, 1987.

    Article  Google Scholar 

  107. Gritsch et al. Impedence spectroscopy of porin and gramicidin pores reconstituted into supported lipid bilayers on indium-tim-oxide electrodes. Langmuir, 14:3118–3125, 1998.

    Article  Google Scholar 

  108. G. Wiegand et al. Electrical properties of supported lipid bilayer membranes. J. Phys. Chem. B, 106:4245–4254, 2002.

    Article  Google Scholar 

  109. J.T. Groves, S.G. Boxer, and H.M. McConnell. Electric field effects in multicomponent fluid lipid membranes. J. Phys. Chem. B, 104(1):119–124, 2000.

    Article  Google Scholar 

  110. T.H. Watts and H.M. McConnell. Antigen presentation by supported planar membranes conntaining purified major histocompatibility complex proteins. In B. Pernis and H. Vogel (eds.), Processing and Presentation of Antigens. Academic Press. pp. 143–155, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Groves, J. (2006). Supported Lipid Bilayers as Mimics for Cell Surfaces and as Tools in Biotechnology. In: Ferrari, M., Desai, T., Bhatia, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25844-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25844-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25565-1

  • Online ISBN: 978-0-387-25844-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics