Skip to main content

Use of Electric Field Array Devices for Assisted Assembly of DNA Nanocomponents and Other Nanofabrication Applications

  • Chapter

Abstract

Microelectronic arrays utilizing electric field transport have been developed for DNA diagnostics (including infectious and genetic disease and cancer detection), for short tandem repeat (STR) forensics analysis, and for gene expression applications. In addition to these bioresearch and clinical diagnostic applications, such devices also have the potential to carry out the assisted assembly of a wide variety of molecular scale, nanoscale and microscale components into higher order structures. These microelectronic array devices are able to produce defined electric fields on their surfaces that allow molecules and other entities with high fidelity recognition properties to be transported to or from any site on the surface of the array. Such devices can utilize either DC electric fields which cause movement of entities by their relative charge, or AC electric fields which allow entities to be selectively positioned by their dielectric properties. An almost unlimited variety of molecules and nanocomponents can be utilized with these devices, including: DNA, DNA constructs with fluorescent, photonic or electronic transfer properties, RNA, RNA constructs, amino acids, peptides, proteins (antibodies, enzymes), nanoparticles (quantum dots, carbon nanotubes, nanowires), cells and even micron scale semiconductor components. Thus, electric field devices can be used for developing a unique highly parallel “Pick & Place” fabrication process by which a variety of heterogeneous molecules, nanocomponents and micron sized objects with intrinsic self-assembly properties can be organized into higher order 2D and 3D structures and devices. The process represents a unique synergy of combining the best aspects of a “top-down” process with a “bottom-up” process. Finally, integration of optical tweezers for manipulation of live cells and microspheres in a similar microarray setup is demonstrated for the applications of biological delivery and invasive manipulation of these species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Small Wonders, Endless Frontiers: Review of the Nanotional Nanotechnology Initiative, National Research Council, 2002.

    Google Scholar 

  2. M.P. Hughes (ed.). Nanoelectromechanics in Engineering and Biology. CRC Press, Boca Raton, FL, 2003.

    Google Scholar 

  3. Goddard, Brenner, Lyashevski, and Lafrate (ed.). Handbook of Nanoscience, Engineering and Technology. CRC Press, Boca Raton, FL, 2003.

    Google Scholar 

  4. V. Balzani, M. Venturi, and A. Credi. Molecular Devices and Mechanics—Journey into the Nanoworld. Wiley-VCH, KGaA Weinheim, 2003.

    Google Scholar 

  5. R. Bashir. Biological mediated assembly of artificial nanostructures and Microtructures. In Goddard, Brenner, Lyashevski and Lafrate (eds.), Handbook of Nanoscience, Engineering and Technology. CRC Press, Chapter 15, pp. 15-1 to 15-31, 2003.

    Google Scholar 

  6. M.J. Heller and R.H. Tullis. Nanotechnology, 2:165–171, 1991.

    Article  Google Scholar 

  7. Daniel M. Hartmann, David Schwartz, Gene Tu, Mike Heller, Sadik C. Esener. Selective DNA attachment of particles to substrates. J. Mat. Res., 17(2):473–478, 2002.

    Google Scholar 

  8. M.J. Heller. An active microelectronics device for multiplex DNA analysis. IEEE Eng. Med. Biol., 15:100–103, 1996.

    Article  Google Scholar 

  9. R.G. Sosnowski, E. Tu, W.F. Butler, J.P. O’Connell, and M.J. Heller. Rapid determination of single base mismatch in DNA hybrids by direct electric field control. Proc. Nat. Acad. Sci. USA, 94:1119–1123, 1997.

    Article  Google Scholar 

  10. C.F. Edman, D.E. Raymond, D.J. Wu, E. Tu, R.G. Sosnowski, W.F. Butler, M. Nerenberg, and M.J. Heller. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res., 25(24):4907–4914, 1997.

    Article  Google Scholar 

  11. M.J. Heller. An integrated microelectronic hybridization system for genomic research and diagnostic applications. In D.J. Harrison and A. van den Berg (eds.), Micro Total Analysis Systems 98, Kluwer Academic Publishers, pp. 221–224, 1998.

    Google Scholar 

  12. M.J. Heller, E. Tu, A. Holmsen, R.G. Sosnowski, and J.P. O’Connell. Active Microelectronic Arrays forDNA Hybridization Analysis. In M. Schena (ed.), DNA Microarrays: A Practical Approach, Oxford University Press, pp. 167–185, 1999.

    Google Scholar 

  13. M.J. Heller, A.H. Forster, E. Tu. Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and genomic applications. Electrophoresis, 21:157–64, 2000.

    Article  Google Scholar 

  14. C. Gurtner, E. Tu, N. Jamshidi, R. Haigis, T. Onofrey, C.F. Edman, R. Sosnowski, B. Wallace, and M.J. Heller. Microelectronic array devices and techniques for electric field enhanced DNA hybridization in lowconductance buffers, Electrophoresis, 23:1543–1550, 2002.

    Article  Google Scholar 

  15. M.J. Heller. DNA microarray technology: devices, systems and applications, Ann. Rev. Biomed. Eng., 4:129–53, 2002.

    Article  Google Scholar 

  16. M.J. Heller, E. Tu, R. Martinsons, R.R. Anderson, C. Gurtner, A. Forster, and R. Sosnowski. Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and nanofabrication applications. In Heller and Guttman (eds.), Integrated Microfabricated Devices, Marcel Dekker, Chap. 10, pp. 223–270, 2002.

    Google Scholar 

  17. S.K. Kassengne, H. Reese, D. Hodko, J.M. Yang, K. Sarkar, D.E. Swanson P. Raymond, M.J. Heller, and M.J. Madou. Numerical modeling of transport and accumulation of DNA on electronically active biochips, Sens. Actu. B, 94:81–98, 2003.

    Article  Google Scholar 

  18. S.C. Esener, D. Hartmann, M.J. Heller, and J.M. Cable. DNA Assisted Micro-Assembly: A Heterogeneous Integration Technology For Optoelectronics, Proc. SPIE Critical Reviews of Optical Science and Technology, Heterogeneous Integration, Ed. A. Hussain, CR70, Chapter 7, January 1998.

    Google Scholar 

  19. C. Gurtner, C.F. Edman, R.E. Formosa, and M.J. Heller. Photoelectrophoretic Transport and Hybridization of DNA on Unpatterned Silicon Substrates. J. Am. Chem. Soc., 122(36):8589–8594, 2000.

    Article  Google Scholar 

  20. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O’Connell, and M. Krihak. Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Anal. Chem., 73:1549–1559, 2001.

    Article  Google Scholar 

  21. C.F. Edman, C. Gurtner, R.E. Formosa, J.J. Coleman, and M.J. Heller. Electric-field-directed pick-and-place assembly. HDI, (3)10:30–35, 2000.

    Google Scholar 

  22. C.F. Edman, R.B. Swint, C. Gurthner, R.E. Formosa, S.D. Roh, K.E. Lee, P.D. Swanson, D.E. Ackley, J.J. Colman, and M.J. Heller. Electric field directed assembly of an InGaAs LED onto silicon circuitry. IEEE Photonics Tech. Lett., 12(9):1198–1200, 2000.

    Article  Google Scholar 

  23. US # 6,569,382 Methods and Apparatus for the Electronic Homogeneous Assembly and Fabrication of Devices, issued May 27, 2003.

    Google Scholar 

  24. US # 6,652,808 Methods for the Electronic Assembly and Fabrication of Devices, issued Nov. 25, 2003.

    Google Scholar 

  25. US #6,706,473 Systems and Devices for the Photoelectrophoretic Transport and Hybridization of Oligonucleotides, issued March 16, 2004.

    Google Scholar 

  26. P. Swanson, R. Gelbart, E. Atlas, L. Yang, T. Grogan, W.F. Butler, D.E. Ackley, and E. Sheldon. A fully multiplexed CMOS biochip for DNA Analysis. Sens. Actu. B, 64:22–30, 2000.

    Article  Google Scholar 

  27. P.N. Gilles, D.J. Wu DJ, C.B. Foster, P.J. Dillion, and S.J. Channock. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips’. Nat. Biotechnol., 17(4):365–370, 1999.

    Article  Google Scholar 

  28. N. Narasimhan and D. O’Kane. Validation of SNP Genotyping for Human Serum Paraoxonase Gene. Clin. Chem., 34(7):589–592, 2001.

    Google Scholar 

  29. R. Sosnowski, M.J. Heller, E. Tu, A. Forster, and R. Radtkey. Active Microelectronic Array System for DNA Hybridization, Genotyping and Pharmacogenomic Applications. Psychiat. Genet., 12:181–192, 2002.

    Article  Google Scholar 

  30. Y.R. Sohni, J.R. Cerhan, and D.J. O’Kane. Microarray and Microfluidic Methodology for Genotyping Cytokine Gene Polymorphisms. Hum. Immunol., 64:990–997, 2003.

    Article  Google Scholar 

  31. E.S. Pollak, L. Feng, H. Ahadian, and P. Fortina. Microarray-based genetic analysis for studying susceptibility to arterial and venous thrombotic disorders. Ital. Heart J., 2:569–572, 2001.

    Google Scholar 

  32. W.A. Thistlethwaite, L.M. Moses, K.C. Hoffbuhr, J.M. Devaney, and E.P. Hoffman. Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization. J. Mol. Diag., 5(2):121–126, 2003.

    Google Scholar 

  33. V.R. Mas, R.A. Fisher, D.G. Maluf, D.S. Wilkinson, T.G. Carleton, and A. Ferreira-Gonzalez. Hepatic artery thrombosis after liver transplantation and genetic factors: prothrombin G20210A polymorphism. Transplanation, 76(1):247–249, 2003.

    Article  Google Scholar 

  34. R. Santacroce, A. Ratti, F. Caroli, B. Foglieni, A. Ferraris, L. Cremonesi, M. Margaglione, M. Seri, R. Ravazzolo, G. Restagno, B. Dallapiccola, E. Rappaport, E.S. Pollak, S. Surrey, M. Ferrari, and P. Fortina. Analysis of clinically relevant single-nucleotide polymorphisms by use of microelectric array technology. Clin. Chem., 48(12):2124–2130, 2002.

    Google Scholar 

  35. A. åsberg, K. Thorstensen, K. Hveem, and K. Bjerve. Hereditary hemochromatosis: the clinical significance of the S64C mutation. Genet. Test., 6(1):59–62, 2002.

    Article  Google Scholar 

  36. J.G. Evans and C. Lee-Tataseo. Determination of the factor V leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectric array technology. Clin. Chem., 48(9):1406–1411, 2002.

    Google Scholar 

  37. J. Cheng, E.L. Sheldon, L. Wu, A. Uribe, L.O. Gerrue, J. Carrino, M.J. Heller, and J.P. O’Connell. Electric field controlled preparation and hybridization analysis ofDNA/RNAfrom E. coli on microfabricated bioelectronic chips. Nat. Biotech., (16):541–546, 1998.

    Article  Google Scholar 

  38. J. Cheng, E.L. Sheldon, L. Wu, M.J. Heller, and J. O’Connell. Isolation of Cultured Cervical Carcinoma Cells Mixed with Peripheral Blood Cells on a Bioelectronic Chip. Anal. Chem., (70):2321–2326, 1998.

    Article  Google Scholar 

  39. Y. Huang, J. Sunghae, M. Duhon, M.J. Heller, B. Wallace, and X. Xu. Dielectrophoretic separation and gene expression profiling on microelectronic chip arrays. Anal. Chem., 74:3362–3371, 2002.

    Article  Google Scholar 

  40. T. Forster. Dicuss. Faraday Soc., 27:7, 1959.

    Article  Google Scholar 

  41. R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, M. Shao, M. Wang, and S.C. Esener. Parallel transport of biological cells using individually addressable VSCEL arrays as optical tweezers. Sens. Actuat. B, 6363:1–5, 2003.

    Google Scholar 

  42. A.L. Birkbeck, R.A. Flynn, M. Ozkan, D. Song, M. Gross, and S.C. Esener. VCSEL arrays as micromanipulators in chip-based biosystem. Biomed. Microdev., 5(1):61–67, 2003.

    Article  Google Scholar 

  43. M. Ozkan, M. Wang, C. Ozkan, R.A. Flynn, and S.C. Esener. Optical manipulation of objects and biological cells in microfluidic devices. Biomed. Microdev., 5(1):47–54, 2003.

    Article  Google Scholar 

  44. M. Ozkan, T. Pisanic, J. Sheel, C. Barrow, S. Esener, and S. Bhatia. “Electro-Optical Platform for the Manipulation of Live Cells”, Special issue on the Biomolecular Interface, Langmuir, 19(5):1532–1538, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Heller, M.J., Ozkan, C.S., Ozkan, M. (2006). Use of Electric Field Array Devices for Assisted Assembly of DNA Nanocomponents and Other Nanofabrication Applications. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics