Skip to main content

Hitting the Spot: The Promise of Protein Microarrays

  • Chapter
BioMEMS and Biomedical Nanotechnology
  • 902 Accesses

Abstract

With the thrust of scientific endeavormoving from genomics to proteomics, the protein array provides a powerful means by which to examine hundreds to thousands of proteins in parallel. A result of the many genome projects has been the advance of automation and robotic procedures to manipulate biomolecules using a high-throughput, systematic approach. The promise of the protein microarray is the ability to interrogate a large number of proteins simultaneously in a high-density format for disease diagnosis, prognosis or efficacy of therapeutic regime as well as for biochemical analysis. Similar to aDNAmicroarray, each spot on a protein array can be identified based on its addressability on the planar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B. Haab, M.J. Dunham, and P.O. Brown. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome. Biol., 2:RESEARCH0004, 2001.

    Google Scholar 

  2. H. Zhu, J.F. Klemic, S. Chang, P. Bertone, A. Casamayor, K.G. Klemic, D. Smith, M. Gerstein, M.A. Reed, and M. Snyder. Analysis of yeast protein kinases using protein chips. Nat. Genet., 26:283–289, 2000.

    Article  Google Scholar 

  3. J.S. Albala. Array-based proteomics: the latest chip challenge. Expert. Rev. Mol. Diagn., 1:145–152, 2001.

    Article  Google Scholar 

  4. D.J. Cahill. Protein and antibody arrays and their medical applications. J. Immunol. Methods, 250:81–91, 2001.

    Article  Google Scholar 

  5. B. Schweitzer, P. Predki, and M. Snyder. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics, 3:2190–2199, 2003.

    Article  Google Scholar 

  6. H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, and T. Houfek et al. Global analysis of protein activities using proteome chips. Science, 293:2101–2105, 2001.

    Article  Google Scholar 

  7. J. Ziauddin and D.M. Sabatini. Microarrays of cells expressing defined cDNAs. Nature, 411:107–110, 2001.

    Article  Google Scholar 

  8. J. Kononen, L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml, S. Leighton, J. Torhorst, M.J. Mihatsch, G. Sauter, and O.P. Kallioniemi. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med., 4:844–847, 1998.

    Article  Google Scholar 

  9. G. Lennon, C. Auffray, M. Polymeropoulos, and M.B. Soares. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics, 33:151–152, 1996.

    Article  Google Scholar 

  10. R.L. Strausberg, E.A. Feingold, R.D. Klausner, and F.S. Collins. The mammalian gene collection. Science, 286:455–457, 1999.

    Article  Google Scholar 

  11. L. Brizuela, P. Braun, and J. LaBaer. FLEXGene repository: from sequenced genomes to gene repositories for high-throughput functional biology and proteomics. Mol. Biochem. Parasitol., 118:155–165, 2001.

    Article  Google Scholar 

  12. M. Gilbert and J.S. Albala. Accelerating code to function: sizing up the protein production line. Curr. Opin. Chem. Biol., 6:102–105, 2002.

    Article  Google Scholar 

  13. S.A. Lesley, P. Kuhn, A. Godzik, A.M. Deacon, I. Mathews, A. Kreusch, G. Spraggon, H.E. Klock, D. McMullan, and T. Shin et al. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. U.S.A., 99:11664–11669, 2002.

    Article  Google Scholar 

  14. R.Y. Huang, S.J. Boulton, M. Vidal, S.C. Almo, A.R. Bresnick, and M.R. Chance. High-throughput expression, purification, and characterization of recombinant Caenorhabditis elegans proteins. Biochem. Biophys. Res. Commun., 307:928–934, 2003.

    Article  Google Scholar 

  15. P. Braun, Y. Hu, B. Shen, A. Halleck, M. Koundinya, E. Harlow, and J. LaBaer. Proteome-scale purification of human proteins from bacteria. Proc. Natl. Acad. Sci. U.S.A., 99:2654–2659, 2002.

    Article  Google Scholar 

  16. P. Braun and J. LaBaer. High throughput protein production for functional proteomics. Trends Biotechnol., 21:383–388, 2003.

    Article  Google Scholar 

  17. P. Sebastian, J. Wallwitz, and S. Schmidt. Semi automated production of a set of different recombinant GST-Streptag fusion proteins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 786:343–355, 2003.

    Article  Google Scholar 

  18. Y.P. Shih, W.M. Kung, J.C. Chen, C.H. Yeh, A.H. Wang, and T.F. Wang. High-throughput screening of soluble recombinant proteins. Protein Sci., 11:1714–1719, 2002.

    Article  Google Scholar 

  19. D. Busso, R. Kim, and S.H. Kim. Expression of soluble recombinant proteins in a cell-free system using a 96-well format. J. Biochem. Biophys. Methods, 55:233–240, 2003.

    Article  Google Scholar 

  20. L.J. Holt, K. Bussow, G. Walter, and I.M. Tomlinson. By-passing selection: direct screening for antibodyantigen interactions using protein arrays. Nucleic Acids Res., 28:E72, 2000.

    Article  Google Scholar 

  21. A. Lueking, A. Possling, O. Huber, A. Beveridge, M. Horn, H. Eickhoff, J. Schuchardt, H. Lehrach, and D.J. Cahill. A Nonredundant Human Protein Chip for Antibody Screening and Serum Profiling. Mol. Cell. Proteomics, 2:1342–1349, 2003.

    Article  Google Scholar 

  22. P. Angenendt, J. Glokler, Z. Konthur, H. Lehrach, and D.J. Cahill. 3D protein microarrays: performing multiplex immunoassays on a single chip. Anal. Chem., 75:4368–4372, 2003.

    Article  Google Scholar 

  23. N. Stich, G. van Steen, and T. Schalkhammer. Design and peptide-based validation of phage display antibodies for proteomic biochips. Comb. Chem. High Throughput Screen, 6:67–78, 2003.

    Google Scholar 

  24. H.J. de Haard, N. van Neer, A. Reurs, S.E. Hufton, E.C. Roovers, P. Henderikx, A.P. de Bruine, J.W. Arends, and H.R. Hoogenboom. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem., 274:18218–18230, 1999.

    Article  Google Scholar 

  25. S. Weng, K. Gu, P.W. Hammond, P. Lohse, C. Rise, R.W. Wagner, M.C. Wright, and R.G. Kuimelis. Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. Proteomics, 2:48–57, 2002.

    Article  Google Scholar 

  26. H. Petach and L. Gold. Dimensionality is the issue: use of photoaptamers in protein microarrays. Curr. Opin. Biotechnol., 13:309–314, 2002.

    Article  Google Scholar 

  27. E.N. Brody and L. Gold. Aptamers as therapeutic and diagnostic agents. J. Biotechnol., 74:5–13, 2000.

    Google Scholar 

  28. Y. Lin, R. Huang, X. Cao, S.M. Wang, Q. Shi, and R.P. Huang. Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate. Clin. Chem. Lab. Med., 41:139–145, 2003.

    Article  Google Scholar 

  29. G. MacBeath and S.L. Schreiber. Printing proteins as microarrays for high-throughput function determination. Science, 289:1760–1763, 2000.

    Google Scholar 

  30. P. Angenendt, J. Glokler, D. Murphy, H. Lehrach, and D.J. Cahill. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem., 309:253–260, 2002.

    Article  Google Scholar 

  31. T.O. Joos, M. Schrenk, P. Hopfl, K. Kroger, U. Chowdhury, D. Stoll, D. Schorner, M. Durr, K. Herick, and S. Rupp et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis, 21:2641–2650, 2000.

    Article  Google Scholar 

  32. L.G. Mendoza, P. McQuary, A. Mongan, R. Gangadharan, S. Brignac, and M. Eggers. High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques, 27:778–780, 782–776, 788, 1999.

    Google Scholar 

  33. V. Afanassiev, V. Hanemann, and S. Wolfl. Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res., 28:E66, 2000.

    Article  Google Scholar 

  34. D. Guschin, G. Yershov, A. Zaslavsky, A. Gemmell, V. Shick, D. Proudnikov, P. Arenkov, and A. Mirzabekov. Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem., 250:203–211, 1997.

    Article  Google Scholar 

  35. J.C. Miller, H. Zhou, J. Kwekel, R. Cavallo, J. Burke, E.B. Butler, B.S. Teh, and B.B. Haab. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics, 3:56–63, 2003.

    Article  Google Scholar 

  36. J. Madoz-Gurpide, H. Wang, D.E. Misek, F. Brichory, and S.M. Hanash. Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics, 1:1279–1287, 2001.

    Article  Google Scholar 

  37. J. Turkova. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl., 722:11–31, 1999.

    Article  Google Scholar 

  38. P. Pavlickova, A. Knappik, D. Kambhampati, F. Ortigao, and H. Hug. Microarray of recombinant antibodies using a streptavidin sensor surface self-assembled onto a gold layer. Biotechniques, 34:124–130, 2003.

    Google Scholar 

  39. P. Peluso, D.S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan et al. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem., 312:113–124, 2003.

    Article  Google Scholar 

  40. A. Lueking, M. Horn, H. Eickhoff, K. Bussow, H. Lehrach, and G. Walter. Protein microarrays for gene expression and antibody screening. Anal. Biochem., 270:103–111, 1999.

    Article  Google Scholar 

  41. J.F. Mooney, A.J. Hunt, J.R. McIntosh, C.A. Liberko, D.M. Walba, and C.T. Rogers. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl. Acad. Sci. U.S.A., 93:12287–12291, 1996.

    Article  Google Scholar 

  42. V.W. Jones, J.R. Kenseth, M.D. Porter, C.L. Mosher, and E. Henderson. Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal. Chem., 70:1233–1241, 1998.

    Article  Google Scholar 

  43. A. Roda, M. Guardigli, C. Russo, P. Pasini, and M. Baraldini. Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28:492–496, 2000.

    Google Scholar 

  44. J.B. Delehanty and F.S. Ligler. Method for printing functional protein microarrays. Biotechniques, 34:380–385, 2003.

    Google Scholar 

  45. D.S. Wilson and S. Nock. Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl., 42:494–500, 2003.

    Article  Google Scholar 

  46. T.O. Joos, D. Stoll, and M.F. Templin. Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol., 6:76–80, 2002.

    Article  Google Scholar 

  47. B. Schweitzer, S. Wiltshire, J. Lambert, S. O’Malley, K. Kukanskis, Z. Zhu, S.F. Kingsmore, P.M. Lizardi, and D.C. Ward. Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. U.S.A., 97:10113–10119, 2000.

    Article  Google Scholar 

  48. B. Schweitzer, S. Roberts, B. Grimwade, W. Shao, M. Wang, Q. Fu, Q. Shu, I. Laroche, Z. Zhou, and V.T. Tchernev et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol., 20:359–365, 2002.

    Article  Google Scholar 

  49. J.S. Albala, K. Franke, I.R. McConnell, K.L. Pak, P.A. Folta, B. Rubinfeld, A.H. Davies, G.G. Lennon, and R. Clark. From genes to proteins: high-throughput expression and purification of the human proteome. J. Cell. Biochem., 80:187–191, 2000.

    Article  Google Scholar 

  50. K.A. Miller, D. Sawicka, D. Barsky, and J.S. Albala. Domain mapping of the Rad51 paralog protein complexes. Nucleic Acids Res., 32:169–178, 2004.

    Article  Google Scholar 

  51. M.A. Coleman, K.A. Miller, P.T. Beernink, D.M. Yoshikawa, and J.S. Albala. Identification of chromatinrelated protein interactions using protein microarrays. Proteomics, 3:2101–2107, 2003.

    Article  Google Scholar 

  52. L.H. Thompson and D. Schild. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat. Res., 477:131–153, 2001.

    Google Scholar 

  53. S.C. West. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell. Biol., 4:435–445, 2003.

    Article  Google Scholar 

  54. D.L. Pittman, L.R. Weinberg, and J.C. Schimenti. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics, 49:103–111, 1998.

    Article  Google Scholar 

  55. N. Liu, J.E. Lamerdin, R.S. Tebbs, D. Schild, J.D. Tucker, M.R. Shen, K.W. Brookman, M.J. Siciliano, C.A. Walter, and W. Fan et al. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell., 1:783–793, 1998.

    Article  Google Scholar 

  56. M.K. Dosanjh, D.W. Collins, W. Fan, G.G. Lennon, J.S. Albala, Z. Shen, and D. Schild. Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res., 26:1179–1184, 1998.

    Article  Google Scholar 

  57. J.S. Albala, M.P. Thelen, C. Prange, W. Fan, M. Christensen, L.H. Thompson, and G.G. Lennon. Identification of a novel human RAD51 homolog, RAD51B. Genomics, 46:476–479, 1997.

    Article  Google Scholar 

  58. N. Liu, D. Schild, M.P. Thelen, and L.H. Thompson. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res., 30:1009–1015, 2002.

    Article  Google Scholar 

  59. J.Y. Masson, M.C. Tarsounas, A.Z. Stasiak, A. Stasiak, R. Shah, M.J. McIlwraith, E.E. Benson, and S.C. West. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev., 15:3296–3307, 2001.

    Article  Google Scholar 

  60. K.A. Miller, D.M. Yoshikawa, I.R. McConnell, R. Clark, D. Schild, and J.S. Albala. RAD51C Interacts with RAD51B and Is Central to a Larger Protein Complex in Vivo Exclusive of RAD51. J. Biol. Chem., 277:8406–8411, 2002.

    Article  Google Scholar 

  61. C. Wiese, D.W. Collins, J.S. Albala, L.H. Thompson, A. Kronenberg, and D. Schild. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Acids Res., 30:1001–1008, 2002.

    Article  Google Scholar 

  62. D.S. Shin, L. Pellegrini, D.S. Daniels, B. Yelent, L. Craig, D. Bates, D.S. Yu, M.K. Shivji, C. Hitomi, A.S. Arvai, N. Volkmann, H. Tsuruta, T.L. Blundell, A.R. Venkitaraman, and J.A. Tainer. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J., 22:4566–4576, 2003.

    Article  Google Scholar 

  63. P.T. Beernink, S.S. Krupka, V. Lao, G. Martin, and M.A. Coleman. Application of in vitro protein expression to human prote. Sci. World J., 2:73–74, 2002.

    Google Scholar 

  64. W.H. Robinson, L. Steinman, and P.J. Utz. Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics, 3:2077–2084, 2003.

    Article  Google Scholar 

  65. W.H. Robinson, C. DiGennaro, W. Hueber, B.B. Haab, M. Kamachi, E.J. Dean, S. Fournel, D. Fong, M.C. Genovese, and H.E. de Vegvar et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med., 8:295–301, 2002.

    Article  Google Scholar 

  66. J.C. Miller, E.B. Butler, B.S. Teh, and B.B. Haab. The application of protein microarrays to serum diagnostics: prostate cancer as a test case. Dis. Markers, 17:225–234, 2001.

    Google Scholar 

  67. R.L. Grubb, V.S. Calvert, J.D. Wulkuhle, C.P. Paweletz, W.M. Linehan, J.L. Phillips, R. Chuaqui, A. Valasco, J. Gillespie, and M. Emmert-Buck et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics, 3:2142–2146, 2003.

    Article  Google Scholar 

  68. E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, and E.C. Kohn et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359:572–577, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Albala, J.S. (2006). Hitting the Spot: The Promise of Protein Microarrays. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics