Skip to main content

Cell Physiometry Tools based on Dielectrophoresis

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Dielectrophoresis is a technique for moving cells and other particles using radiofrequency electric fields. The usefulness of this method depends on the ability to generate highly non-uniform electric fields using microelectrodes, and also on the intrinsic dielectric properties of the cells and their surrounding medium. Selective cell isolation or concentration can be achieved without the need for biochemical labels, dyes or other markers and tags, and the cells remain viable after this process. Changes in cell state, such as those associated with activation, apoptosis, differentiation, necrosis, as well as responses to chemical and physical agents for example, can be monitored by observing changes in dielectrophoretic behavior. The basic theories and experimental techniques of dielectrophoresis are described in this chapter, and a summary is given of our present understanding of how the dielectrophoretic behavior of cells relate to their physiological and physico-chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abraham. The Classical Theory of Electricity and Magnetism, English Translation of 8th German Ed., Hafner Publ. Co., New York, 1932.

    MATH  Google Scholar 

  2. W.M. Arnold, H.P. Schwan, and U. Zimmermann. Phys. Chem., 91:5093, 1987.

    Google Scholar 

  3. D.J. Bakewell, I. Ermolina, H. Morgan, J.J. Milner, and Y. Feldman. Biochim. Biophys. Acta., 1493:151, 2000.

    Google Scholar 

  4. J.B. Bates, T.T. Chu, and W.T. Stribling. Phys. Rev. Lett., 60:627, 1988.

    Google Scholar 

  5. J. Bauer. In J. Bauer (ed.), Cell Electrophoresis CRC Press, Boca Raton, 1994.

    Google Scholar 

  6. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P.R.C. Gascoyne. J. Phys. D: Appl. Phys., 27:2659, 1994.

    Google Scholar 

  7. F.F. Becker, P.R.C. Gascoyne, Y. Huang, and X.B. Wang. US patent 5 993 630, 1999.

    Google Scholar 

  8. D.J. Bennett, B. Khusid, C.D. James, P.C. Galambos, M. Okandan, D. Jacqmin, and A. Acrivos. Appl. Phys. Lett., 83:4866, 2003.

    Google Scholar 

  9. J.P.H. Burt, T.A.K. Al-Ameen, and R. Pethig. J. Phys. E: Sci. Instrum., 22:952, 1989.

    Google Scholar 

  10. J.P.H. Burt, R. Pethig, P.R.C. Gascoyne, and F.F. Becker. Biochim. Biophys. Acta, 1034:93, 1990.

    Google Scholar 

  11. J.P.H. Burt, R. Pethig, and M.S. Talary. Trans. Inst. MC, 20:82, 1998.

    Google Scholar 

  12. E.G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski, and K.V.I.S. Kaler. J. Microbiol. Meth., 58:387, 2004.

    Google Scholar 

  13. K.K Chittur, L.V. McIntire, and R.R. Rich. Biotechnol. Prog., 4:89, 1988.

    Google Scholar 

  14. K.S. Cole. Membranes, Ions and Impulses, Univ. of Calif. Press, 1972.

    Google Scholar 

  15. E.B. Cummings. IEEE Eng. Med. Biol. Magazine, 22(6):75, 2003.

    MathSciNet  Google Scholar 

  16. C.W. Einolf and E.L. Carstensen. Biophys. J., 9:634, 1969.

    Google Scholar 

  17. M. Frénéa, S.P. Faure, B. Le Piouffle, Ph. Coquet, and H. Fujita. Mat. Sci. Eng. C, 23:597, 2003.

    Google Scholar 

  18. H. Fröhlich. Theory of Dielectrics, Oxford University Press, Oxford, pp. 26–28, 1949.

    Google Scholar 

  19. G. Fuhr, T. Müller, Th. Schnelle, R. Hagedorn, A. Voigt, S. Fiedler, W. M. Arnold, U. Zimmermann, B. Wagner, and A. Heuberger. Naturwissenschaften, 81:528, 1994a.

    Google Scholar 

  20. G. Fuhr, H. Glasser, T. Müller, and T. Schnelle. Biochim. Biophys. Acta, 1201:353, 1994b.

    Google Scholar 

  21. G. Fuhr, Th. Schnelle, R. Hagedorn, and S.G. Shirley. Cell. Eng., 1:47, 1995.

    Google Scholar 

  22. G. Fuhr, C. Reichle, T. Müller, K. Kahlke, K. Schutze, and M. Stuke, Appl. Phys., A69:611, 1999.

    Google Scholar 

  23. P.R.C. Gascoyne, Y. Huang, R. Pethig, J. Vykoukal, and F.F. Becker. Meas. Sci. Technol. 3:439, 1992.

    Google Scholar 

  24. P.R.C. Gascoyne, R. Pethig, J.P.H. Burt, and F.F. Becker. Biochim. Biophys. Acta, 1149:119, 1993.

    Google Scholar 

  25. P.R.C. Gascoyne and J. Vykoukal. Electrophoresis 23:1973, 2002.

    Google Scholar 

  26. A.D. Goater, J.P.H. Burt, and R. Pethig. J. Phys. D: Appl. Phys., 30:L65, 1997.

    Google Scholar 

  27. D.C. Graham. Chem. Rev., 41:441, 1947.

    Google Scholar 

  28. E.H. Grant, R.J. Sheppard, and G.P. South. Clarendon Press, Oxford, 1978.

    Google Scholar 

  29. S. Grimnes and O.G. Martinsen. Bioimpedance and Bioelectricity, Academic Press, San Diego, 2000.

    Google Scholar 

  30. R. Hagedorn, G. Fuhr, T. Müller, and J. Gimsa. Electrophoresis, 13:49, 1992.

    Google Scholar 

  31. J.B. Hasted. Aqueous Dielectrics, Chapman & Hall, London, 1973.

    Google Scholar 

  32. K.F. Hoettges, M.P. Hughes, A. Cotton, N.A.E. Hopkins and M.B. McDonnell. IEEE Eng. Med. Biol. Magazine, 22(6):68, 2003.

    Google Scholar 

  33. Y. Huang and R. Pethig. Meas. Sci. Technol., 2:1142, 1991.

    Google Scholar 

  34. Y. Huang, J.A. Tame, and R. Pethig. J. Phys. D: Appl. Phys., 26:1528, 1993.

    Google Scholar 

  35. Y. Huang, X.-B. Wang, R. Hölzel, F.F. Becker, and P.R.C. Gascoyne. Phys. Med. Biol., 40:1789, 1995.

    Google Scholar 

  36. Y. Huang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne. Biochim. Biophys. Acta, 1282:76, 1996.

    Google Scholar 

  37. Y. Huang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne. Biophys. J., 73:1118, 1997.

    Google Scholar 

  38. Y. Huang, X.-B. Wang, P.R.C. Gascoyne, and F.F. Becker. Biochim. Biophys. Acta, 1417:51, 1999.

    Google Scholar 

  39. Y. Huang, K.L. Ewaituhon, M. Tirado, R. Haigis, A. Foster, D. Ackley, M.J. Heller, J.P. O’Connell, and M. Krihak. Anal. Chem., 73:1549, 2001.

    Google Scholar 

  40. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, and X. Xu. Anal. Chem., 74:3362, 2002.

    Google Scholar 

  41. M.P. Hughes. Nanoelectromechanics in Engineering and Biology, CRC Press, Boca Raton, 2002,a.

    Google Scholar 

  42. M.P. Hughes. Electrophoresis, 23:2569, 2002,b.

    Google Scholar 

  43. M.P. Hughes, R. Pethig, and X.-B. Wang. J. Phys. D: Appl. Phys., 29:474, 1996.

    Google Scholar 

  44. T. Inoue, R. Pethig, T.A.K. Al-Ameen, J.P.H. Burt, and J.A.R. Price. J. Electrostat., 21:215, 1988.

    Google Scholar 

  45. A. Irimajiri, T. Hanai, and A. Inouye. J. Theor. Biol., 78:251, 1979.

    Google Scholar 

  46. T.B. Jones and G.A. Kallio. J. Electrostatics, 6:207, 1979.

    Google Scholar 

  47. T.B. Jones. Electromechanics of Particles, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  48. H. Li and R. Bashir. Sens. Actu. B: Chem., 86:215, 2002.

    Google Scholar 

  49. L.B. Leverett, L.D. Hellums, C.P. Alfrey, and E.C. Lynch. Biophys. J., 12:257, 1972.

    Google Scholar 

  50. J. Lyklema. Fundamentals of Interface and Colloid Science, Vol. 2: Solid-Liquid Interfaces, Academic Press, San Diego, 1995.

    Google Scholar 

  51. N. Manaresi, A. Romani, G. Medora, L. Altomare, A. Leonardi, and M. Tartagni. IEEE J. Sol. St. Circ., 38:2297, 2003.

    Google Scholar 

  52. G.H. Markx and R. Pethig. Biotechnol. & Boieng., 45:337, 1995.

    Google Scholar 

  53. G.H. Markx, Y. Huang, X.F. Zhou, and R. Pethig. Microbiology, 140: 1994a.

    Google Scholar 

  54. G.H. Markx, M.S. Talary, and R. Pethig. J. Biotechnology, 32:29, 1994b.

    Google Scholar 

  55. S. Masuda, M. Washizu, and I. Kawabata. IEEE Trans. Ind. Appl., 24:214, 1988.

    Google Scholar 

  56. J.C Maxwell. A Treatise on Electricity and Magnetism, 3rd Ed., Vol. 1, Ch. 9, Clarendon Press, Oxford, 1891.

    Google Scholar 

  57. H. Morgan, N.G. Green, M.P. Hughes, W. Monaghan, W., and T.C. Tan. J. Micromech. Microeng., 7:65, 1997.

    Google Scholar 

  58. H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, and A. Ramos. J. Phys. D: Appl. Phys., 34:1553, 2001.

    Google Scholar 

  59. H. Morgan and N.G. Green. AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Baldock, 2003.

    Google Scholar 

  60. J.R. Morgan and R. Pethig. J. Phys. E: Sci. Instrum., 12:1132, 1979.

    Google Scholar 

  61. T. Müller, A. Pfennig, P. Klein, G. Gradl, M. Jäger, and T. Schnelle. IEEE Eng. Med. Biol. Magazine, 22(6):51, 2003.

    Google Scholar 

  62. T. Nagahama, N. Muramatsu, H. Ohshima, and T. Kondo. Colloid. Surf., 67:61, 1992.

    Google Scholar 

  63. E. Neumann, A.E. Sowers, and C.A. Jordan. (Eds.) Electroporation and Electrofusion in Cell Biology, Plenum Press, New York, 1989.

    Google Scholar 

  64. R. Paul, K.V.I.S. Kaler, and T.B. Jones. J. Phys. Chem., 97:4745, 1993.

    Google Scholar 

  65. S.J. Paddison, R. Paul, and K.V.I.S. Kaler. J. Colloid Interface Sci., 183:78, 1996.

    Google Scholar 

  66. R. Pethig. Dielectric and Electronic Properties of Biological Materials, J. Wiley, Chichester, 1979.

    Google Scholar 

  67. R. Pethig. In I. Karube (ed.), Automation in Biotechnology, Elsevier Science Publishers B.V., 159–185, 1991.

    Google Scholar 

  68. R Pethig. Crit. Rev. Biotechnology, 16:331, 1996.

    Google Scholar 

  69. R. Pethig and G.H. Markx. Trends in Biotechnology, 15:426, 1997.

    Google Scholar 

  70. R. Pethig and J.P.H. Burt. US Patent 5 795 457, 1998.

    Google Scholar 

  71. R. Pethig and G.H. Markx. US Patent 5 814,200, 1998.

    Google Scholar 

  72. R. Pethig, J.P.H. Burt, A. Parton, N. Rizvi, M.S. Talary, and J.A. Tame. J. Micromech. Microeng., 8:57, 1998.

    Google Scholar 

  73. R. Pethig and J.P.H. Burt. European Patent EP 0 898 493, 2000.

    Google Scholar 

  74. R. Pethig, V. Bressler, C. Carswell-Crumpton, Y. Chen, L. Foster-Haje, M.E. Garicia-Ojeda, R.S. Lee, G.M. Lock, M.S. Talary, and K.M. Tate. Electrophoresis, 23:2057, 2002.

    Google Scholar 

  75. R. Pethig, M.S. Talary, R.S. Lee, B. Kusler and C. Carswell-Crumpton. In M.A. Northrup, K.F. Jensen and D.J. Harrison (eds.), Proc. µTAS 2003, The Transducers Research Foundation, ISBN: 0-9743611-0-0) pp. 1065–1068, 2003.

    Google Scholar 

  76. R. Pethig, M.S. Talary, and R.S. Lee. IEEE Eng. Med. Biol. Magazine, 22(6):43, 2003.

    Google Scholar 

  77. R. Pethig, R.S. Lee, and M.S. Talary. JALA, 9:324, 2004.

    Google Scholar 

  78. H.A. Pohl. J. Appl. Phys., 22:869, 1951.

    Google Scholar 

  79. H.A. Pohl. Dielectrophoresis, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  80. H.A. Pohl and R. Pethig. J. Phys. E: Sci. Instrum., 10:190, 1977.

    Google Scholar 

  81. J.A.R. Price, J.P.H. Burt, and R. Pethig. Biochim. Biophys. Acta, 964:221, 1988.

    Google Scholar 

  82. A. Ramos, H. Morgan, N.G. Green, and A. Castellanos. J. Phys. D: Appl. Phys., 31:2338, 1998.

    Google Scholar 

  83. K. Ratanachoo, P.R.C. Gascoyne, and M. Ruchirawat. Biochim. Biophys. Acta, 1564:449, 2002.

    Google Scholar 

  84. J. Rousselet, G. H. Markx, and R. Pethig. Colloids Surf. A: Physicochem. Eng. Aspects, 140:209, 1998.

    Google Scholar 

  85. B. Saif, R.K. Mohr, C.J. Montrose, and T.A. Litovitz. Biopoymers, 31:1171, 1991.

    Google Scholar 

  86. M. Sancho, G. Martinez, and C. Martin. J. Electrostat., 57:143, 2003.

    Google Scholar 

  87. F.A. Sauer. In A. Chiabrera, C. Nicolini, and H. P. Schwan (eds.), Interactions between Electromagnetic Fields and Cells, Plenum Publ., New York, pp. 181–202, 1985.

    Google Scholar 

  88. T. Schnelle, T. Müller, and G. Fuhr. J. Electrostat., 50:17, 2000.

    Google Scholar 

  89. H.P. Schwan. In A. Chiabrera, C. Nicolini, and H. P. Schwan (eds.), Interactions between Electromagnetic Fields and Cells, Plenum Publ., New York, pp. 75–97, 1985.

    Google Scholar 

  90. J.W. Smith. Electric Dipole Moments, Butterworth Scientific Publ., London, 7–11, 1955.

    Google Scholar 

  91. M. Stephens, M. Talary, R. Pethig, A.K. Burnett, and K.I. Mills. Bone Marrow Transplant 18:777, 1996.

    Google Scholar 

  92. J. Suehiro and R. Pethig. J. Phys. D: Appl. Phys., 31:3298, 1998.

    Google Scholar 

  93. J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, and M. Hara. J. Electrostatics, 57:157, 2003a.

    Google Scholar 

  94. J. Suehiro, D. Noutomi, M. Shutou, and M. Hara. J. Electrostatics, 58:229, 2003b.

    Google Scholar 

  95. V.L. Sukhorukov, G. Meedt, M. Kurschner, and U. Zimmermann. J. Electrostat., 50:191, 2001.

    Google Scholar 

  96. S. Takashima. Electrical Properties of Biopolymers and Membranes, Adam Hilger, Bristol, 1989.

    Google Scholar 

  97. M.S. Talary and R. Pethig. IEEE Proc. Sci. Meas. Technol., 141:395, 1994.

    Google Scholar 

  98. M.S. Talary, J.P.H. Burt, J.A. Tame, and R. Pethig. J. Phys. D: Appl. Phys., 29:2198, 1996.

    Google Scholar 

  99. J. Voldman, M. Toner, M.L. Gray, and M.A. Schmidt. J. Electrostat., 57:69, 2003.

    Google Scholar 

  100. K.W. Wagner. Archiv. Elektrotechnik, 2:S371, 1914.

    Google Scholar 

  101. X.B. Wang, R. Pethig, and T.B. Jones. J. Phys. D: Appl. Phys., 25:905, 1992.

    Google Scholar 

  102. X.B. Wang, Y. Huang, J.P.H. Burt, G.H. Markx, and R. Pethig. J. Phys. D: Appl. Phys., 26:312, 1993a.

    Google Scholar 

  103. X.B. Wang, Y. Huang, R. Hölzel, J.P.H. Burt, and R. Pethig. J. Phys. D: Appl. Phys., 26:1278, 1993b.

    Google Scholar 

  104. X.B. Wang, Y. Huang, P.R.C. Gascoyne, F.F. Becker, R. Hölzel, and R. Pethig. Biochim. Biophys. Acta, 1193:330, 1994a.

    Google Scholar 

  105. X.B. Wang, Y. Huang, F.F. Becker, and P.R.C. Gascoyne. J Phys. D: Appl. Phys., 27:1571, 1994b.

    Google Scholar 

  106. X-B. Wang, Y. Huang, X. Wang, F.F. Becker, and P.R.C. Gascoyne. Biophysical J., 72:1887, 1997.

    Google Scholar 

  107. X.J. Wang, F.F. Becker, and P.R.C. Gascoyne. Biochim. Biophys. Acta, 1564:412, 2002.

    Google Scholar 

  108. M. Washizu and O. Kurosawa. IEEE Trans. Ind. Appl., 26:1165, 1990.

    Google Scholar 

  109. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara. IEEE Trans. Ind. Appl., 30:835, 1994.

    Google Scholar 

  110. J. Yang, Y. Huang, X. Wang, X. B. Wang, F.F. Becker, and P.R.C. Gascoyne. Biophys. J., 76:3307, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pethig, R. (2006). Cell Physiometry Tools based on Dielectrophoresis. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics