Skip to main content

Engineered Ribozymes: Efficient Tools for Molecular Gene Therapy and Gene Discovery

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Ribozymes are catalytic RNA molecules that cleave RNAs with high specificity. Hammerhead ribozymes are small and particularly versatile catalytic RNA molecules that cleave RNAs at specific sites (Figure 17.1A, left). The rapidly developing field of RNA catalysis is of particular current interest not only because of the intrinsic catalytic properties of ribozymes but also because of the potential utility of ribozymes as therapeutic agents and specific regulators of gene expression [16, 17, 45, 88, 89, 90, 105]. However, despite extensive efforts, the efficiency of ribozyme in vivo has generally been too low to achieve the desired biological effects. Unlike in vitro, conditions in vivo are very complex and many parameters must be taken into account, in particular conditions, the interactions of a ribozyme or its gene with intracellular proteins, which seem to be significant. Many modifications of and improvements in ribozymes, as well as methods for the introduction of ribozymes into cells, have been developed in attempts to exploit ribozymes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.F. Alino, J. Crespo, M. Bobadila, M. Lejarreta, C. Blaya, and A. Crespo. Biochem. Biophys. Res. Comm., 204:1023, 1994.

    Article  Google Scholar 

  2. S.V. Amontov and K. Taira. J. Am. Chem. Soc., 118:1624, 1996.

    Article  Google Scholar 

  3. G.-J. Arts, M. Fornerod, and I.W. MattaJ. Curr. Biol., 6:305, 1998a.

    Article  Google Scholar 

  4. G.-J. Arts, S. Kuersten, P. Romby, B. Ehresmann, and I.A. MattaJ. EMBO J.17, 7430, 1998b.

    Article  Google Scholar 

  5. C. Beger, L.N. Pierce, M. Kruger, E.G. Marcusson, J.M. Robbins, P. Welsh, P.J. Welch, K. Welte, M.C. King, J.R. Barber, and F. Wong-Staal. Proc. Natl. Acad. Sci. U.S.A., 98:130, 2001.

    Article  Google Scholar 

  6. E. Bertrand, D. Castanotto, C. Zhou, C. Carnonnelle, G.P. Lee, S. Chatterjee, T. Grange, R. Picket, D. Kohn, D. Engelke, and J.J. Rossi, RNA, 3:75, 1997.

    Google Scholar 

  7. K.R. Birikh, P.A. Heaton, and F. Eckstein. Eur. J. Biochem., 245:1, 1997.

    Article  Google Scholar 

  8. I.C. Braun, E. Rohrbach, C. Schmitt, and E. Izaurralde. EMBO J., 18:1953, 1999.

    Article  Google Scholar 

  9. T.R. Brummelkamp, R. Bernards, and R. Agami. Science, 296:550, 2002.

    Article  Google Scholar 

  10. N.J. Caplen, E.W. Alton, P.G. Middleton, J.R. Dorin, B.J. Stevenson, X. Gao, S.R. Durham, P.K. Jeffery, M.E. Hodson, and C. Coutelle et al. Nature Med., 1:39, 1995.

    Article  Google Scholar 

  11. C. Carola and F. Eckstein. Proc. Natl. Acad. Sci. U.S.A., 3, 274 (1999).

    Google Scholar 

  12. M. Cotton and M.L. Birnstiel. EMBO J. 8, 3881, 1989.

    Google Scholar 

  13. J. de la Crutz, D. Kressler, and P. Linder. Trends Biochem. Sci., 24:192, 1999.

    Article  Google Scholar 

  14. D. Das, D. Henning, Wright, and R. Reddy. EMBO J. 7, 503, 1998.

    Google Scholar 

  15. J.A. Doudna. Curr. Biol., 8:495, 1998.

    Article  Google Scholar 

  16. F. Eckstein, and D.M.J. Lilley, Nucleic Acids and Moleculad Biology: Catalytic RNA. (Springer-Verlag, Berlin, 1996), vol. 10.

    Google Scholar 

  17. R.P. Erickson and J. Izant. Gene Regulation: Biology of Antisense RNA and DNA. Raven Press, New York, NY, 1992.

    Google Scholar 

  18. Famulok. Curr. Opin. Struc. Biol., 9:324, 1999.

    Article  Google Scholar 

  19. D.J. Fu, F. Benseler, and L.W. McLaughlin. J. Am. Chem. Soc., 116:4591, 1994.

    Article  Google Scholar 

  20. E.P. Geiduschek and G.P. Tocchini-Valentini. Annu. Rev. Biochem., 57:873, 1988.

    Article  Google Scholar 

  21. R.F. Gesteland, T.R. Cech, and J.F. Atkins. The RNA World. Spring Harbor Laboratory Press, NY, 1999.

    Google Scholar 

  22. J.M. Goldman and J.V. Melo. New Engl. J. Med., 349:1451, 2003.

    Article  Google Scholar 

  23. P.D. Good, A.J. Krikos, X.L. Li, N.S. Lee, L. Giver, A. Ellington, J.A. Zaia, J.J. Rossi, and D.R. Engelke. Gene Ther., 4:45, 1997.

    Article  Google Scholar 

  24. E.M. Gorden and W.F. Anderson. Curr. Opin. Biotechnol., 5:611, 1994.

    Article  Google Scholar 

  25. Grosshand, E. Hurt and G. Simos. Genes Dev., 14:830, 2000.

    Google Scholar 

  26. P. Grüter, C. Tabernero, C. von Kobbe, C. Schmitt, C. Saavedra, A. Bachi, M. Wilm, B.K. Felber, and E. Izaurralde. Mol. Cell, 1:649, 1998.

    Article  Google Scholar 

  27. Y.J. Hernandez, J. Wang, W.G. Kearns, S. Loiler, A. Poirier, and T.R. Flotte. J. Virol., 73:8549, 1990.

    Google Scholar 

  28. C.A. Hodge, H.V. Colot, P. Stafford, and C.N. Cole. EMBO J., 18:5778, 1999.

    Article  Google Scholar 

  29. H. James, K. Mills, and I. Gibson. Leukemia, 10:1054, 1996.

    Google Scholar 

  30. E. Jankowsky, C.H. Gross, S. Shuman, and A.M. Pyle. Nature, 403:447, 2000.

    Article  Google Scholar 

  31. T. Kanamori, K. Nishimaki, S. Asoh, Y. Ishibashi, I. Takata, T. Kuwabara, K. Taira, H. Yamaguchi, S. Sugihara, T. Yamazaki, Y. Ihara, K. Nakano, S. Matsuda, and S. Ohta. EMBO J., 22:2913, 2003.

    Article  Google Scholar 

  32. Y. Kang and B.R. Cullen. Genes Dev., 13:1126, 1999.

    Google Scholar 

  33. Y. Kato, T. Kuwabara, M. Warashina, H. Toda, and K. Taira. J. Biol. Chem., 276:15378, 2001.

    Article  Google Scholar 

  34. H. Kawasaki, J. Ohkawa, N. Tanishige, K. Yoshinari, T. Murata, K.K. Yokoyama, and K. Taira. Nucleic Acids Res., 24:3010, 1996.

    Article  Google Scholar 

  35. H. Kawasaki, R. Eckner, T.P. Yao, K. Taira, R. Chiu, D.M. Livingston, and K.K. Yokoyama. Nature, 393:284, 1998.

    Article  Google Scholar 

  36. H. Kawasaki and K. Taira. EMBO Rep., 3:443, 2002a.

    Article  Google Scholar 

  37. H. Kawasaki and K. Taira. Nucleic Acids Res., 30:3609, 2002b.

    Article  Google Scholar 

  38. H. Kawasaki, R. Onuki, E. Suyama, and K. Taira. Nat. Biotechnol., 20:376, 2002c.

    Article  Google Scholar 

  39. H. Kawasaki and K. Taira. Nucleic Acids Res., 61:700, 2003.

    Article  Google Scholar 

  40. M.A. Kay, L. Meuse, A.M. Gown, P. Linsley, D. Hollenbaugh, A. Aruffo, H.D. Ochs, and C.B. Wilson. Proc. Natl. Acad. Sci. U.S.A., 94:4684, 1997.

    Google Scholar 

  41. S. Koseki, J. Ohkawa, R. Yamamoto, Y. Tanabe, and K. Taira. J. Control Rel., 53:159, 1998.

    Article  Google Scholar 

  42. S. Koseki, T. Takebe, K. Tani, S. Asano, T. Shioda, Y. Nagai, T. Shimada, J. Ohkawa, and K. Taira. J. Virol., 73:1868, 1999.

    Google Scholar 

  43. I. Kovesdi, D.E. Brough, J.T. Brude, and T.J. Wickham. Curr. Opin. Biotechnol., 8:583, 1997.

    Article  Google Scholar 

  44. K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling, and T.R. Cech. Cell, 31:147, 1982.

    Article  Google Scholar 

  45. G. Krupp and R.K. Gaur. Ribozyme: Biochemistry and Biotechnology. Eaton Publishing, MA, 2000.

    Google Scholar 

  46. U. Kutay, G. Lipowsky, E. Izaurralde, F.R. Bischoff, P. Schwarzmaier, E. Hartmann, and D. Görlich. Cell., 1:359, 1998.

    Google Scholar 

  47. T. Kuwabara, S.V. Amontov, M. Warashina, J. Ohkawa, and K. Taira. Nucleic Acids Res., 24:2302, 1996.

    Article  Google Scholar 

  48. T. Kuwabara, M. Warashina, T. Tanabe, K. Tani, S. Asano, and K. Taira. Nucleic Acids Res., 25:3074, 1997.

    Article  Google Scholar 

  49. T. Kuwabara, M. Warashina, M. Orita, S. Koseki, J. Ohkawa, and K. Taira. Nat. Biotechnol., 16:961, 1998a.

    Article  Google Scholar 

  50. T. Kuwabara, M. Warashina, T. Tanabe, K. Tani, S. Asano, and K. Taira. Mol. Cell, 2:617, 1998b.

    Article  Google Scholar 

  51. T. Kuwabara, M. Warashina, A. Nakayama, J. Ohkawa, and K. Taira. Proc. Natl. Acad. Sci. U.S.A., 96:1886, 1999.

    Article  Google Scholar 

  52. T. Kuwabara, M. Warashina, and K. Taira. Curr. Opin. Chem. Biol., 4:669, 2000a.

    Article  Google Scholar 

  53. T. Kuwabara, M. Warashina, and K. Taira. Trends Biotechnol., 18:462, 2000b.

    Article  Google Scholar 

  54. T. Kuwabara, M. Warashina, S. Koseki, M. Sano, J. Ohkawa, A. Nakayama, and K. Taira. Nucleic Acids Res., 29:2780, 2001a.

    Article  Google Scholar 

  55. T. Kuwabara, M. Warashina, M. Sano, H. Tang, F. Wong-Staal, E. Munekata, and K. Taira. Biomacromol., 2:1229, 2001b.

    Article  Google Scholar 

  56. T. Kuwabara et al. Cell, submitted for publication.

    Google Scholar 

  57. D.S. Latchman. Mol. Biotechnol., 2:175, 1994.

    Google Scholar 

  58. C.-G. Lee, P.D. Zamore, M.R. Green, and J. Hurwitz. J. Biol. Chem., 268:16822, 1993.

    Google Scholar 

  59. N.S. Lee, T. Dohjima, G. Bauer, H. Li, M.J. Li, A. Ehsani, P. Salvaterra, and J. Rossi. Nat. Biotechnol., 20:500, 2002.

    Google Scholar 

  60. J. Li, H. Tang, T.M. Mullen, C. Westberg, T.R. Reddy, D.W. Rose, and F. Wong-Staal. Proc. Natl. Acad. Sci. U.S.A., 96:709, 1999.

    Article  Google Scholar 

  61. Q.X. Li, J.M. Robbins, P.J. Welch, F. Wong-Staal, and J.R. Barber. Nucleic Acids Res., 28:2605, 2000.

    Article  Google Scholar 

  62. D.M.J. Lilley. Curr. Opin. Struct. Biol., 9:330, 1999.

    Article  Google Scholar 

  63. G. Lipowsky, F.R. Bischoff, E. Izaurralde, U. Kutay, S. Scharfer, H.J. Gross, H. Beier, and D. Görlich, D. RNA, 5:539, 1999.

    Article  Google Scholar 

  64. D.M. Long and O.C. Uhlenbeck. Proc. Natl. Acad. Sci. U.S.A., 91:6977, 1994.

    Article  Google Scholar 

  65. E. Lund and J.E. Dahlberg. Science, 282:2082, 1998.

    Article  Google Scholar 

  66. M.J. McCall, P. Hendry, and P.A. Jennings. Proc. Natl. Acad. Sci. U.S.A., 89:5710, 1992.

    Article  Google Scholar 

  67. M.T. McManus and P.A. Sharp. Nat. Rev. Genet., 3:737, 2002.

    Article  Google Scholar 

  68. N. Milner, K.U. Mir, and E.M. Southern. Nat. Biotechnol., 15:537, 1997.

    Article  Google Scholar 

  69. M. Miyagishi and K. Taira. Nat. Biotechnol., 20:497, 2002.

    Article  Google Scholar 

  70. A. Mountain. A. Trends Biotechnol., 18:119, 2000.

    Article  Google Scholar 

  71. A.J. Muller, J.C. Young, A.M. Pendergast, M. Pondel, N.R. Landau, D.R. Littman, and O.N. Witte. Cell. Biol., 11:1785, 1991.

    Google Scholar 

  72. R.J. Mumper, J.G. Duguid, K. Anwer, M.K. Barren, H. Nitta, and A.P. Rolland. Pharm. Res., 13:701, 1996.

    Article  Google Scholar 

  73. J.A.H. Murray. Antisense RNA and DNA. Wiley-Liss Inc., New York, NY, 1992.

    Google Scholar 

  74. L. Naldini. Curr. Opin. Biotechnol., 9:457, 1998.

    Article  Google Scholar 

  75. B. Nawrot, S. Antoszczyk, M. Maszewska, T. Kuwabara, M. Warashina, K. Taira, and W.J. Stec. Eur. J. Biochem., 270:3962, 2003.

    Article  Google Scholar 

  76. D.L. Nelson, E. Suyama, H. Kawasaki, and K. Taira. TARGETS, 2:191, 2003.

    Article  Google Scholar 

  77. P.C. Nowell and D.A. Humgerford. Science, 132:1497, 1960.

    Google Scholar 

  78. J. Ohkawa and K. Taira. Human Gene Ther., 11:577, 2000.

    Article  Google Scholar 

  79. R. Onuki, A. Nagasaki, H. Kawasaki, T. Baba, T.Q.P. Ueda, and K. Taira. Proc. Natl. Acad. Sci. U.S.A., 99:14716, 2002.

    Article  Google Scholar 

  80. R. Onuki, Y. Bando, E. Suyama, T. Katayama, H. Kawasaki, T. Baba, M. Tohyama, and K. Taira. EMBO J., submitted for publication, 2003.

    Google Scholar 

  81. K. Oshima, H. Kawasaki, Y. Soda, K. Tani, S. Asano, and K. Taira. Cancer Res., 63:6809, 2003.

    Google Scholar 

  82. C.J. Pachuk, K. Yoon, K. Moelling, and L.R. Coney. Nucleic Acids Res., 22:301, 1994.

    Article  Google Scholar 

  83. P.J. Paddison, A.A. Caudy, and G.J. Hannon. Proc. Natl. Acad. Sci. U.S.A., 99:1443, 2002.

    Article  Google Scholar 

  84. V. Patzel and G. Sczakiel. Nat. Biotechnol., 16:64, 1998.

    Article  Google Scholar 

  85. C.P. Paul, P.D. Good, I. Winer, and D.R. Engelke. Nat. Biotechnol., 20:505, 2002.

    Article  Google Scholar 

  86. J.C. Perales, T. Ferkol, M. Molas, and R.W. Hanson. Eur. J. Biochem., 226:255, 1994.

    Article  Google Scholar 

  87. J.E. Rabinowits and J. Samulski. Curr. Opin. Biotechnol., 9:470, 1998.

    Article  Google Scholar 

  88. J.J. Rossi and N. Sarver. Trends Biotechnol., 8:179, 1990.

    Article  Google Scholar 

  89. J.J. Rossi. Trends Biotechnol., 13:301, 1995.

    Article  Google Scholar 

  90. N. Sarver, E.M. Cantin, P.S. Chang, J.A. Zaida, P.A. Ladne, D.A. Stephenes, and J.J. Rossi. Science, 247:1222, 1990.

    Article  Google Scholar 

  91. M. Scherr, K. Battmer, T. Winkler, O. Heidenreich, A. Ganser, and M. Eder. Blood, 101:1566, 2003.

    Article  Google Scholar 

  92. C. Schmitt, C. von Kobbe, A. Bachi, N. Pante, J.P. Rodrigues, C. Boscheron, G. Rigaut, M. Wilm, B. Seraphin, M. Carmo-Fonseca, and E. Izaurralde. EMBO J., 18:4332, 1999.

    Article  Google Scholar 

  93. W.G. Scott. Curr. Opin. Chem. Biol., 3:703, 1999.

    Article  Google Scholar 

  94. T. Shimayama, S. Nishikawa, and K. Taira. Biochemistry, 34:3649, 1995.

    Article  Google Scholar 

  95. E. Shtivelman, B. Lifschitz, R.P. Gale, B.A. Roe, and J. Canaani. Cell, 47:277, 1986.

    Article  Google Scholar 

  96. G. Sui, C. Soohoo, B. Affarel, F. Gay, Y. Shi, W.C. Forrester, and Y. Shi. Proc. Natl. Acad. Sci. U.S.A., 99:5515, 2002.

    Article  Google Scholar 

  97. B.A. Sullenger and T.R. Cech. Science, 262:1566, 1993.

    Article  Google Scholar 

  98. E. Suyama, H. Kawasaki, T. Kasaoka, and K. Taira. Cancer Res., 63:119, 2003a.

    Google Scholar 

  99. E. Suyama, H. Kawasaki, M. Nakajima, and K. Taira. Proc. Natl. Acad. Sci. U.S.A., 100:5616, 2003b.

    Article  Google Scholar 

  100. K. Taira, M. Warashina, T. Kuwabara, and H. Kawasaki. Functional hybrid molecules with sliding ability. Japanese Patent Application H11-316133, 1999.

    Google Scholar 

  101. T. Tanabe, T. Kuwabara, M. Warashina, K. Tani, K. Taira, and S. Asano. Nature, 406:473, 2000a.

    Article  Google Scholar 

  102. T. Tanabe, I. Takata, T. Kuwabara, M. Warashina, H. Kawasaki, K. Tani, S. Ohta, S. Asano, and K. Taira. Biomacromol., 1:108, 2000b.

    Article  Google Scholar 

  103. H. Tang, G.M. Gaietta, W.H. Fischer, M.H. Ellisman, and F. Wong-Staal. Science, 276:1412, 1997.

    Article  Google Scholar 

  104. H. Tang and F. Wong-Staal. J. Biol. Chem., 275:32694, 2000.

    Article  Google Scholar 

  105. P.C. Turner. Methods in Molecular Biology: Ribozyme Protocols. Humana Press, Totowa, NJ, 74, 1997.

    Google Scholar 

  106. T. Tuschl and F. Eckstein. Proc. Natl. Acad. Sci. U.S.A., 90:6991, 1993.

    Article  Google Scholar 

  107. R. Wadhwa, H. Ando, H. Kawasaki, K. Taira, and S.C. Kaul. EMBO Rep., 4:595, 2003.

    Article  Google Scholar 

  108. J.D.O. Wagner, E. Jankowsky, M. Company, A.M. Pyle, and J.N. Abelson. EMBO J., 17:2926, 1998.

    Article  Google Scholar 

  109. N.G. Walter and J.M. Burke. Curr. Opin. Chem. Biol., 2:24, 1998.

    Article  Google Scholar 

  110. M. Warashina, D.M. Zhou, T. Kuwabara, and K. Taira. Ribozyme structure and function: Comprehensive Natural Products Chemistry. Elsevier Science Ltd., Oxford, vol. 6, p. 235, 1999.

    Google Scholar 

  111. M. Warashina, T. Kuwabara, and K. Taira. Structure, 8:207, 2000a.

    Article  Google Scholar 

  112. M. Warashina, Y. Takagi, W.J. Stec, and K. Taira. Curr. Opin. Biotechnol., 11:354, 2000b.

    Article  Google Scholar 

  113. M. Warashina, T. Kuwabara, Y. Kato, M. Sano, and K. Taira. Proc. Natl Acad. Sci. U.S.A., 98:5572, 2001.

    Article  Google Scholar 

  114. P.J. Welch, E.G. Marcusson, Q.K. Li, C. Begar, M. Kruger, C. Zhou, M. Leavitt, F. Wong-Staal, and J.R. Barber. Genomics, 66:274, 2000.

    Article  Google Scholar 

  115. C. Westberg, J.P. Yang, H. Tang, T.R. Reddy, and F. Wong-Staal. J. Biol. Chem., 275:21396, 2000.

    Article  Google Scholar 

  116. N. Wu and M.M. Ataai. Curr. Opin. Biotechnol., 11:205, 2000.

    Article  Google Scholar 

  117. Y. Yang, Q. Li, H.C. Ertl, and J.M. Wilson. J. Virol., 69:200, 1995.

    Google Scholar 

  118. J.Y. Yu, S.L. DeRuiter, and D.L. Turner. Proc. Natl. Acad. Sci. U.S.A., 99:6047, 2002.

    Article  Google Scholar 

  119. D.M. Zhou and K. Taira. Chem. Rev., 98:991, 1998.

    Article  Google Scholar 

  120. M. Zucker. Methods Enzymol., 180:262, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Shiota, M., Miyagishi, M., Taira, K. (2006). Engineered Ribozymes: Efficient Tools for Molecular Gene Therapy and Gene Discovery. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics