Skip to main content

Centrifuge Based Fluidic Platforms

  • Chapter
BioMEMS and Biomedical Nanotechnology
  • 952 Accesses

Abstract

Once it became apparent that individual chemical or biological sensors used in complex samples would not attain the hoped for sensitivity or selectivity, wide commercial use became severely hampered and sensor arrays and sensor instrumentation were proposed instead. It was projected that by using orthogonal sensor array elements (e.g., in electronic noses and tongues) selectivity would be improved dramatically [1]. Instrumentation—it was envisioned—would reduce matrix complexities through filtration, separation, and concentration of the target compound, while, at the same time, ameliorating selectivity and sensitivity of the overall system by frequent recalibration and washing of the sensors. Through miniaturization of analytical equipment (using microfluidics), shortcomings associated with large and expensive instrumentation may potentially be overcome: reduction in reagent volumes, favorable scaling properties of several important instrument processes (basic theory of hydrodynamics and diffusion predicts faster heating and cooling and more efficient chromatographic and electrophoretic separations in miniaturized equipment) and batch-fabrication which may enable low cost, disposable instruments to be used once and then thrown away to prevent sample contamination [2]. Micromachining (MEMS) might also allow co-fabrication of many integrated functional instrument blocks. Tasks that are now performed in a series of conventional bench top instruments could then be combined into one unit, reducing labor and minimizing the risk of sample contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Verpoorte, Manz, C.S. Effenhauser, N. Burggraf, D.E. Raymond, D.J. Harrison, and H.M. Widmer. Miniaturization of separation techniques using planar chip technology, HRC High Resol. Chromatogra., 16:433–36, 1993.

    Article  Google Scholar 

  2. Marc J. Madou. Fundamentals of Microfabrication, 2nd Ed., CRC Press, Boca Raton, London, New York, Washington D.C., 2002.

    Google Scholar 

  3. S. Miyazaki, T. Kawai, and M. Araragi. A Piezo-Electric Pump Driven by a Flexural Progressive Wave. In Proceedings: IEEE Micro Electro Mechanical Systems (MEMS’ 91), Nara, Japan, pp. 283–88, 1991.

    Google Scholar 

  4. J.W. Jorgenson and E.J. Guthrie. Liquid chromatography in open-tubular columns, J. Chromatogr., 255:335–48, 1983.

    Article  Google Scholar 

  5. D.J. Harrison, Z. Fan, K. Fluri, and K. Seiler. Integrated Electrophoresis Systems for Biochemical Analyses. In Technical Digest: 1994 Solid State Sensor and Actuator Workshop, Hilton Head Island, S.C., pp. 21–24, 1994.

    Google Scholar 

  6. D.C. Duffy, H.L. Gills, J. Lin, N.F. Sheppard, and G.J. Kellogg. Microfabicated centrifugal microfluidic systems: characterization and multiple enzymatic assays, Anal. Chemi., 71(20):4669–4678, 1999.

    Article  Google Scholar 

  7. M.J. Madou and G.J. Kellogg. The LabCDTM: a centrifuge-based microfluidic platform for diagnostics. In G.E. Cohn and A. Katzir (eds.), Systems and Technologies for Clinical Diagnostics and Drug Discovery, Vol. 3259, San Jose, Calif.: SPIE, pp. 80–93, 1998.

    Google Scholar 

  8. G.T.A. Kovacs. Micromachined Transducers Sourcebook, WCB/McGraw-Hill, Boston, chapter 9, pp. 787–793, 1998.

    Google Scholar 

  9. Gunnar Ekstrand, Claes Holmquist, Anna Edman örlefors, Bo Hellman, Anders Larsson, and Per Anderson, Microfluidics in a rotating CD. In A. van den Berg,W. Olthuis, and P. Bergveld (eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 311–314, 2000.

    Google Scholar 

  10. Anna-Lisa Tiensuu, Ove öhman, Lars Lundbladh, and Olle Larsson, Hydrophobic valves by ink-jet printing on plastic CDs with integrated microfluidics, In A. van den Berg, W. Olthuis, P. Bergveld (eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 575–578, 2000.

    Google Scholar 

  11. Marc J. Madou, Yumin Lu, Siyi Lai, Jim Lee, and Sylvia Daunert. A centrifugal microfluidic platform—a comparison, In A. van den Berg, W. Olthuis, and P. Bergveld. Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 565–570, 2000.

    Google Scholar 

  12. Jun Zeng, Deb Banerjee, Manish Deshpande, John R. Gilbert, David C. Duffy, and Gregory J. Kellogg. Design analysis of capillary burst valves in centrifugal microfluidics. In A. van den Berg, W. Olthuis, P. Bergveld (eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 579–582, 2000.

    Google Scholar 

  13. I.H.A. Badr, R.D. Johnson, M.J. Madou, and L.G. Bachas. Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform, Analytical Chemistry, 74(21):5569–5575, Nov 2002.

    Article  Google Scholar 

  14. R.D. Johnson, I.H.A. Badr, Gary Barrett, Siyi Lai, Yumin Lu, Marc J. Madou, and Leonidas G. Bachas. Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal. Chem., 73(16):3940–3946, Aug 2001.

    Article  Google Scholar 

  15. M. McNeely, M. Spute, N. Tusneem, and A. Oliphant. Hydrophobic microfluidics. Proceedings Microfluidic Devices and Systems, SPIE, Vol. 3877, pp. 210–220, 1999.

    Google Scholar 

  16. Application Report 101, Gyrolab MALDI SP1, Gyros AB, Uppsala, Sweden.

    Google Scholar 

  17. S. Lai, S. Wang, J. Luo, J. Lee, S. Yang, and M.J. Madou. Compact Disc (CD) Platform for Enzyme-Linked Immunosorbant Assays Manuscript submitted to Analytical Chemistry.

    Google Scholar 

  18. Gregory J.Kellogg,T odd E. Arnold, Bruce L. Carvalho, David C. Duffy, and Norman F. Sheppard, Centrifugal microfluidics: applications. In A. van den Berg, W. Olthuis, and P. Bergveld (eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 239–242, 2000.

    Google Scholar 

  19. Nick Thomas, Anette Ocklind, Ingrid Blikstad, Suzanne Griffiths, Michael Kenrick, Helene Derand, Gunnar Ekstrand, Christel Ellström, Anders Larsson, and Per Anderson Integrated cell based assays in microfabricated disposable CD devices. In A. van den Berg, W. Olthuis, and P. Bergveld (eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publishers, pp. 249–252, 2000.

    Google Scholar 

  20. A.W. Anderson. Physical Chemistry of Surfaces, JohnWiley & Sons, New York, London, Sidney, Chapter1, pp. 5–6, 1960.

    Google Scholar 

  21. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides. Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane), Anal. Chem., 70:4974–4984, 1998.

    Article  Google Scholar 

  22. J. Burbaum, Minitaturization technologies in HTS: how fast, how small, how soon?, Drug Discov Today, 3(7):313–312, 1998.

    Article  Google Scholar 

  23. Jim V. Zoval, Richard Boulanger, Charles Blackwell, Bruce Borchers, Michael Flynn, David Smernoff, Ragnhild Landheim, Rocco Mancinelli Marc J. Madou. Cell Viability Assay on a Rotating Disc Analytical System, Manuscript of paper in preparation.

    Google Scholar 

  24. M.G. Pollack, A.D. Shenderov, and R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a chip, 2:96–101, 2002.

    Article  Google Scholar 

  25. M.J. Madou, L. James Lee, S. Daunert, S. Lai, and C.-H. Shih. Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomed. Microdevi., 3(3):245–254, 2001.

    Article  Google Scholar 

  26. T. Brenner, T. Glatzel, R. Zengerle, and J. Ducree, A Flow Switch Based on Coriolis Force, 7th International Conference on Miniaturized Chemical Biochemical Analysis Systems.

    Google Scholar 

  27. D.D. Carlo, K-H Jeong, and L. P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation, Lab on a Chip, 3:287–291, 2003.

    Article  Google Scholar 

  28. S.W. Lee, H. Yowanto, and Y.C. Tai. Micro Cell Lysis Device, The 11th Annual International Workshop on Micro Electro Mechanical Systems, MEMS’ 98.

    Google Scholar 

  29. J. Sambrook and D. W. Russell.Molecular Cloning, Cold Spring Harbor Laboratory press, Cold spring harbor, New York, 2001.

    Google Scholar 

  30. Amy Q. Shen, Granular fingering patterns in horizontal rotating cylinders. Physics of Fluids, 14(2)462–470, 2002.

    Article  Google Scholar 

  31. L. Bocquet,W. Losert, D, Schalk, T.C. Lubensky, and J.P. Gollub. Granular shear flow dynamics and forces: experiment and continuum theory, Physical Review E (65), 011307–1.

    Google Scholar 

  32. K.J. Ruschak and L.E. Scriven, Rimming flow of liquid in a rotating horizontal cylinder, Fluid Mech. 76:113–127, 1976.

    Article  MATH  Google Scholar 

  33. S.T. Thoroddsen and L. Mahadevan. Experimental Study of coating flows in a partially-filled horizontally rotating cylinder, Exper. Fluids, 23:1–13, 1997.

    Article  Google Scholar 

  34. R.A. Bagnold. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, “ 225(1160):49–63, 1954.

    Google Scholar 

  35. Cliff K.K. Lun, Granular dynamics of inelastic spheres in Couette flow, Phys. Fluids, 8(11), 1996.

    Google Scholar 

  36. S.F. Foerster, M.Y. Louge, H. Chang, and K. Allia. Measurements of the collision properties of small spheres, Phy. Fluids 6(3), 1994.

    Google Scholar 

  37. G.K. Batchelor. A new theory of the instability of a uniform fluidized bed, J. Fluid Mech., 193:75–110, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Zenit, M.L. Hunt, and C.E. Brennen. “Collisional particle pressure measurements in solid-liquid flows, Fluid Mech. 353:261–283, 1997.

    Article  Google Scholar 

  39. S.A. Morsi and A.J. Alexander. An investigation of particle trajectories in two-phase flow systems, Fluid Mech., 55(2):193–208, 1972.

    Article  MATH  Google Scholar 

  40. J. Kirchner J, S.B. Sandmeyer, and D.B. Forrest. Transposition of a Ty3GAG3-POL3 fusion mutant is limited by availability of capsid protein, Virol., 66(10):6081–92, 1992.

    Google Scholar 

  41. R. Barathur, J. Bookout, S. Sreevatsan, J. Gordon, M. Werner, G. Thor, and M. Worthington. New disc-based technologies for diagnostic and research applications, Psychiat. Geneti., (12)4:193–206, 2002.

    Google Scholar 

  42. I. Alexandre, Y.Houbion, J. Collet, S. Hamels, J. Demarteau, J.-L. Gala, and J. Remacle. Compact disc with both numeric and genomic information as DNA microarray platform, BioTechniques, (33)2:435, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Zoval, J.V., Madou, M.J. (2006). Centrifuge Based Fluidic Platforms. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics