Skip to main content

Polymer Design for Nonviral Gene Delivery

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [13]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [49]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kaiser. Gene therapy. Side effects sideline hemophilia trial. Science, 304(5676):1423–1425, 2004.

    Article  Google Scholar 

  2. D.A. Williams and C. Baum. Medicine. Gene therapy-new challenges ahead. Science, 302(5644):400–401, 2003.

    Article  Google Scholar 

  3. M. Cavazzana-Calvo, A. Thrasher, and F. Mavilio. The future of gene therapy. Nature, 427(6977):779–781, 2004.

    Article  Google Scholar 

  4. J.C. Fratantoni, S. Dzekunov, V. Singh, and L.N. Liu. A non-viral gene delivery system designed for clinical use. Cytotherapy, 5(3):208–210, 2003.

    Article  Google Scholar 

  5. H. Ma and S.L. Diamond. Nonviral gene therapy and its delivery systems. Curr. Pharm. Biotechnol., 2(1):1–17, 2001.

    Article  Google Scholar 

  6. M. Nishikawa and L. Huang. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene. Ther., 12(8):861–870, 2001.

    Article  Google Scholar 

  7. S.H. Pun and M.E. Davis. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem., 13(3):630–639, 2002.

    Article  Google Scholar 

  8. M. Thomas and A.M. Klibanov. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol., 62(1):27–34, 2003.

    Article  Google Scholar 

  9. J. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Deliv. Rev., 55(3):329–347, 2003.

    Article  Google Scholar 

  10. K. Ewert et al. Cationic lipid-DNA complexes for gene therapy: understanding the relationship between complex structure and gene delivery pathways at the molecular level. Curr. Med. Chem., 11(2):133–149, 2004.

    Article  Google Scholar 

  11. M.C. Pedroso de Lima, S. Neves, A. Filipe, N. Duzgunes, and S. Simoes. Cationic liposomes for gene delivery: from biophysics to biological applications. Curr. Med. Chem., 10(14):1221–1231, 2003.

    Article  Google Scholar 

  12. Y. Xu and F.C. Szoka, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 35(18):5616–5623, 1996.

    Article  Google Scholar 

  13. P. Midoux et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic. Acids Res., 21(4):871–878, 1993.

    Article  Google Scholar 

  14. A. ElOuahabi, M. Thiry, V. Pector, R. Fuks, J.M. Ruysschaert, and M. Vandenbranden. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett., 414(2):187–192, 1997.

    Article  Google Scholar 

  15. B.A. Sosnowski, A.M. Gonzalez, L.A. Chandler, Y.J. Buechler, G.F. Pierce, and A. Baird. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J. Biol. Chem., 271(52):33647–33653, 1996.

    Article  Google Scholar 

  16. R.A. Jones et al. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem. J., 372(Pt 1):65–75, 2003.

    Article  Google Scholar 

  17. T.R. Kyriakides, C.Y. Cheung, N. Murthy, P. Bornstein, P.S. Stayton, and A.S. Hoffman. pH-sensitive polymers that enhance intracellular drug delivery in vivo. J. Control Rel., 78(1–3):295–303, 2002.

    Article  Google Scholar 

  18. O. Boussif et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U.S.A., 92(16):7297–7301, 1995.

    Article  Google Scholar 

  19. A.M. Funhoff, C.F. van Nostrum, G.A. Koning, N.M. Schuurmans-Nieuwenbroek, D.J. Crommelin, and W.E. Hennink. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules, 5(1):32–39, 2004.

    Article  Google Scholar 

  20. D. Lechardeur et al., Metabolic instability of plasmidDNAin the cytosol: a potential barrier to gene transfer. Gene Ther., 6(4):482–497, 1999.

    Article  Google Scholar 

  21. L.J. Branden, A.J. Mohamed, and C.I. Smith. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol., 17(8):784–787, 1999.

    Article  Google Scholar 

  22. A. Ziemienowicz, D. Gorlich, E. Lanka, B. Hohn, and L. Rossi. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc. Natl. Acad. Sci. U.S.A., 96(7):3729–3733, 1999.

    Article  Google Scholar 

  23. T. Blessing, M. Kursa, R. Holzhauser, R. Kircheis, and E. Wagner. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug. Chem., 12(4):529–537, 2001.

    Article  Google Scholar 

  24. A. Brownlie, I.F. Uchegbu, and A.G. Schatzlein. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm., 274(1–2):41–52, 2004.

    Article  Google Scholar 

  25. A. Gautam, J.C. Waldrep, F.M. Orson, B.M. Kinsey, B. Xu, and C.L. Densmore. Topical gene therapy for pulmonary diseases with PEI-DNA aerosol complexes. Methods Mol. Med., 75:561–572, 2003.

    Google Scholar 

  26. K. Kunath, A. von Harpe, D. Fischer, and T. Kissel. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J. Control Rel., 88(1):159–172, 2003.

    Article  Google Scholar 

  27. P. Lampela, P. Soininen, A. Urtti, P.T. Mannisto, and A. Raasmaja. Synergism in gene delivery by small PEIs and three different nonviral vectors. Int. J. Pharm., 270(1–2):175–184, 2004.

    Article  Google Scholar 

  28. M.L. Forrest, J.T. Koerber, and D.W. Pack, A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem., 14(5):934–940, 2003.

    Article  Google Scholar 

  29. M.L. Forrest, G.E. Meister, J.T. Koerber, and D.W. Pack. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res., 21(2):365–371, 2004.

    Article  Google Scholar 

  30. L. Wightman et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene. Med., 3(4):362–372, 2001.

    Article  Google Scholar 

  31. S.M. Zou, P. Erbacher, J.S. Remy, and J.P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med., 2(2):128–134, 2000.

    Article  Google Scholar 

  32. B. Brissault, A. Kichler, C. Guis, C. Leborgne, O. Danos, and H. Cheradame. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug. Chem., 14(3):581–587, 2003.

    Article  Google Scholar 

  33. H.K. Nguyen et al. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther., 7(2):126–138, 2000.

    Article  Google Scholar 

  34. M.A. Gosselin, W. Guo, and R.J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem., 12(6):989–994, 2001.

    Article  Google Scholar 

  35. C.H. Ahn, S.Y. Chae, Y.H. Bae, and S.W. Kim. Biodegradable poly(ethylenimine) for plasmidDNAdelivery. J. Control Rel., 80(1–3):273–282, 2002.

    Article  Google Scholar 

  36. H. Petersen, T. Merdan, K. Kunath, D. Fischer, and T. Kissel. Poly(ethylenimine-co-L-lactamide-cosuccinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug Chem., 13(4):812–821, 2002.

    Article  Google Scholar 

  37. H. Petersen et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem., 13(4):845–854, 2002.

    Article  Google Scholar 

  38. C.L. Gebhart, S. Sriadibhatla, S. Vinogradov, P. Lemieux, V. Alakhov, and A.V. Kabanov. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjug. Chem., 13(5):937–944, 2002.

    Article  Google Scholar 

  39. D.A. Wang et al. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules, 3(6):1197–1207, 2002.

    Article  Google Scholar 

  40. M. Lee, J. Rentz, S.O. Han, D.A. Bull, and S.W. Kim.Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther., 10(7):585–593, 2003.

    Article  Google Scholar 

  41. G.P. Tang et al. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials, 24(13):2351–2362, 2003.

    Article  Google Scholar 

  42. L. Shi et al. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycolgrafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther., 10(14):1179–1188, 2003.

    Article  Google Scholar 

  43. T. Merdan et al. Pegylated polyethylenimine-Fab’ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug. Chem., 14(5):989–996, 2003.

    Article  Google Scholar 

  44. W. Guo and R.L. Lee. Receptor-targeted gene delivery via folate-conjugated polyethylenimine. AAPS PharmSci., 1(4):E19, 1999.

    Article  Google Scholar 

  45. J.M. Benns, A. Maheshwari, D.Y. Furgeson, R.I. Mahato, and S.W. Kim, Folate-PEG-folate-graft-polyethylenimine-based gene delivery. J. Drug Target, 9(2):123–139, 2001.

    Article  Google Scholar 

  46. C.H. Ahn, S.Y. Chae, Y.H. Bae, and S.W. Kim. Synthesis of biodegradable multiblock copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J. Control Rel., 97(3):567–574, 2004.

    Google Scholar 

  47. Oupicky, D., R.C. Carlisle, and L.W. Seymour. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 2001. 8(9): p. 713–24.

    Google Scholar 

  48. M.D. Brown et al. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug. Chem., 11(6):880–891, 2000.

    Article  Google Scholar 

  49. D. Putnam, C.A. Gentry, D.W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. U.S.A., 98(3):1200–1205, 2001.

    Article  Google Scholar 

  50. T.G. Kim et al. Gene transfer into human hepatoma cells by receptor-associated protein/polylysine conjugates. Bioconjug. Chem., 15(2):326–332, 2004.

    Article  Google Scholar 

  51. J.H. Jeong, S.W. Kim, and T.G. Park.Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug. Chem., 14(2):473–479, 2003.

    Article  Google Scholar 

  52. Y.B. Lim et al. Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharm. Res., 17(7):811–816, 2000.

    Article  Google Scholar 

  53. A. Maheshwari et al. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol. Ther., 2(2):121–130, 2000.

    Article  MathSciNet  Google Scholar 

  54. M. Lee, K.S. Ko, S. Oh, and S.W. Kim. Prevention of autoimmune insulitis by delivery of a chimeric plasmid encoding interleukin-4 and interleukin-10. J. Control Rel., 88(2):333–342, 2003.

    Article  Google Scholar 

  55. A. Maheshwari, S. Han, R.I. Mahato, and S.W. Kim. Biodegradable polymer-based interleukin-12 gene delivery: role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther., 9(16):1075–1084, 2002.

    Article  Google Scholar 

  56. M. Kramer et al. Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chembiochem, 5(8):1081–1087, 2004.

    Article  Google Scholar 

  57. N.A. Jones, I.R. Hill, S. Stolnik, F. Bignotti, S.S. Davis, and M.C. Garnett. Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer-DNA complexes for gene delivery. Biochim. Biophys. Acta, 1517(1):1–18, 2000.

    Google Scholar 

  58. Z.Y. Zhang and B.D. Smith, High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug. Chem., 11(6):805–814, 2000.

    Article  Google Scholar 

  59. J.H. Lee et al. Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug. Chem., 14(6):1214–1221, 2003.

    Article  Google Scholar 

  60. J.Y. Cherng, P. van de Wetering, H. Talsma, D.J. Crommelin, and W.E. Hennink. Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm. Res., 13(7):1038–1042, 1996.

    Article  Google Scholar 

  61. D.W. Lim, Y.I. Yeom, and T.G. Park. Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes. Bioconjug. Chem., 11(5):688–695, 2000.

    Article  Google Scholar 

  62. A. Akinc, D.M. Lynn, D.G. Anderson, and R. Langer. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc., 125(18):5316–23, 2003.

    Article  Google Scholar 

  63. A. Akinc, D.G. Anderson, D.M. Lynn, and R. Langer. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug. Chem., 14(5):979–988, 2003.

    Article  Google Scholar 

  64. D.G. Anderson, D.M. Lynn, and R. Langer. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl., 42(27):3153–3158, 2003.

    Article  Google Scholar 

  65. S. Jon, D.G. Anderson, and R. Langer. Degradable poly(amino alcohol esters) as potential DNA vectors with low cytotoxicity. Biomacromolecules, 4(6):1759–1762, 2003.

    Article  Google Scholar 

  66. Y.B. Lim, S.M. Kim, H. Suh, and J.S. Park. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem., 13(5):952–957, 2002.

    Article  Google Scholar 

  67. J. Luten et al. Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J. Control Rel., 89(3):483–497, 2003.

    Article  Google Scholar 

  68. N.C. Bellocq, S.H. Pun, G.S. Jensen, and M.E. Davis. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem., 14(6):1122–1132, 2003.

    Article  Google Scholar 

  69. S.J. Hwang and M.E. Davis. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr. Opin. Mol. Ther., 3(2):183–191, 2001.

    Google Scholar 

  70. S.R. Popielarski, S. Mishra, and M.E. Davis. Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconjug. Chem., 14(3):672–678, 2003.

    Article  Google Scholar 

  71. S.H. Pun et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem., 15(4):831–840, 2004.

    Article  Google Scholar 

  72. T.M. Reineke and M.E. Davis. Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type. Bioconjug. Chem., 14(1):255–261, 2003.

    Article  Google Scholar 

  73. T.M. Reineke and M.E. Davis. Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from charge centers. Bioconjug. Chem., 14(1):247–254, 2003.

    Article  Google Scholar 

  74. M.E. Davis et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem., 11(2):179–197, 2004.

    Article  Google Scholar 

  75. Z. Zhao, J. Wang, H.Q. Mao, and K.W. Leong. Polyphosphoesters in drug and gene delivery. Adv. Drug. Deliv. Rev., 55(4):483–99, 2003.

    Article  Google Scholar 

  76. J. Wen, H.Q. Mao, W. Li, K.Y. Lin, and K.W. Leong. Biodegradable polyphosphoester micelles for gene delivery. J. Pharm. Sci., 93(8):2142–57, 2004.

    Article  Google Scholar 

  77. Wang, J., S.J. Gao, P.C. Zhang, S.Wang, H.Q. Mao, and K.W. Leong, Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Ther., 11(12):1001–1010, 2004.

    Article  Google Scholar 

  78. J. Wang, S.W. Huang, P.C. Zhang, H.Q. Mao, and K.W. Leong. Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters. Int. J Pharm., 265(1–2):75–84, 2003.

    Article  Google Scholar 

  79. J. Wang, P.C. Zhang, H.Q. Mao, and K.W. Leong. Enhanced gene expression in mouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier. Gene Ther., 9(18):1254–1261, 2002.

    Article  Google Scholar 

  80. J. Wang et al. New polyphosphoramidate with a spermidine side chain as a gene carrier. J. Control Rel., 83(1):157–168, 2002.

    Article  Google Scholar 

  81. S.W. Huang, J. Wang, P.C. Zhang, H.Q. Mao, R.X. Zhuo, and K.W. Leong. Water-soluble and nonionic polyphosphoester: synthesis, degradation, biocompatibility and enhancement of gene expression in mouse muscle. Biomacromolecules, 5(2):306–311, 2004.

    Article  Google Scholar 

  82. J. Wang, H.Q. Mao, and K.W. Leong. A novel biodegradable gene carrier based on polyphosphoester. J. Am. Chem. Soc., 123(38):9480–9481, 2001.

    Article  Google Scholar 

  83. S. Wang, N. Ma, S.J. Gao, H. Yu, and K.W. Leong. Transgene expression in the brain stem effected by intramuscular injection of polyethylenimine/DNA complexes. Mol. Ther., 3(5 Pt 1):658–664, 2001.

    Article  Google Scholar 

  84. Y. Li et al. CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes. Gene Ther., 11(1):109–114, 2004.

    Article  Google Scholar 

  85. F.C. MacLaughlin et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Controll. Rel., 56(1–3):259–272, 1998.

    Article  Google Scholar 

  86. K.Y. Lee, I.C. Kwon, Y.H. Kim, W.H. Jo, and S.Y. Jeong. Preparation of chitosan self-aggregates as a gene delivery system. J. Controll. Rel., 51(2–3):213–220, 1998.

    Article  Google Scholar 

  87. S.C. Richardson, H.V. Kolbe, and R. Duncan. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm., 178(2):231–43, 1999.

    Article  Google Scholar 

  88. M. Thanou, J.C. Verhoef, and H.E. Junginger. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv. Rev., 50Suppl 1:S91–S101, 2001.

    Article  Google Scholar 

  89. H.Q. Mao et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control Rel., 70(3):399–421, 2001.

    Article  Google Scholar 

  90. K. Roy, H.Q. Mao, S.K. Huang, and K.W. Leong. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med., 5(4):387–91, 1999.

    Article  Google Scholar 

  91. K.W. Leong, H.Q. Mao, V.L. Truong-Le, K. Roy, S.M. Walsh, and J.T. August.DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control Rel., 53(1–3):183–193, 1998.

    Article  Google Scholar 

  92. S. Gao et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm., 255(1–2):57–68, 2003.

    Article  Google Scholar 

  93. T. Kiang, J. Wen, H.W. Lim, and K.W. Leong. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 25(22):5293–301, 2004.

    Article  Google Scholar 

  94. M. Huang, E. Khor, and L.Y. Lim. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm. Res., 21(2):344–353, 2004.

    Article  Google Scholar 

  95. M. Koping-Hoggard et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther., 11(19):1441–1452, 2004.

    Article  Google Scholar 

  96. M. Koping-Hoggard, Y.S. Mel’nikova, K.M. Varum, B. Lindman, and P. Artursson. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J. Gene Med., 5(2):130–141, 2003.

    Article  Google Scholar 

  97. M. Thanou, B.I. Florea, M. Geldof, H.E. Junginger, and G. Borchard. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23(1):153–159, 2002.

    Article  Google Scholar 

  98. J.L. Chew, C.B. Wolfowicz, H.Q. Mao, K.W. Leong, and K.Y. Chua. Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine, 21(21–22):2720–2729, 2003.

    Article  Google Scholar 

  99. M. Kumar et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene. Ther., 13(12):1415–1425, 2002.

    Article  Google Scholar 

  100. M. Kumar, X. Kong, A.K. Behera, G.R. Hellermann, R.F. Lockey, and S.S. Mohapatra. Chitosan IFN-gamma-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet. Vaccines Ther., 1(1):3, 2003.

    Article  Google Scholar 

  101. V.L. Truong-Le, J.T. August, and K.W. Leong. Controlled gene delivery by DNA-gelatin nanospheres. Hum. Gene Ther., 9(12):1709–1717, 1998.

    Google Scholar 

  102. V.L. Truong-Le et al. Gene transfer by DNA-gelatin nanospheres. Arch. Biochem. Biophys., 361(1):47–56, 1999.

    Article  Google Scholar 

  103. J. Wang et al. Evaluation of collagen and methylated collagen as gene carriers. Int. J. Pharm., 279(1–2):115–126, 2004.

    Article  Google Scholar 

  104. J. Bonadio, E. Smiley, P. Patil, and S. Goldstein. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med., 5(7):753–759, 1999.

    Article  Google Scholar 

  105. C. Wang et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat. Mater., 3(3):190–196, 2004.

    Article  Google Scholar 

  106. C.G. Oster, M. Wittmar, F. Unger, L. Barbu-Tudoran, A.K. Schaper, and T. Kissel. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles. Pharm. Res., 21(6):927–931, 2004.

    Article  Google Scholar 

  107. J.W. Hong, J.H. Park, K.M. Huh, H. Chung, I.C. Kwon, and S.Y. Jeong. PEGylated polyethylenimine for in vivo local gene delivery based on lipiodolized emulsion system. J. Control Rel., 99(1):167–176, 2004.

    Article  Google Scholar 

  108. Rhaese, S., H. von Briesen, H. Rubsamen-Waigmann, J. Kreuter, and K. Langer. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J. Control Rel., 92(1–2):199–208, 2003.

    Google Scholar 

  109. W. Guo and R.J. Lee. Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine. J. Control Rel., 77(1–2):131–138, 2001.

    Article  Google Scholar 

  110. S.V. Vinogradov, T.K. Bronich and A.V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 54(1):135–147, 2002.

    Article  Google Scholar 

  111. P. Lemieux et al. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell. J. Drug Target, 8(2):91–105, 2000.

    Article  MathSciNet  Google Scholar 

  112. K. McAllister et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J. Am. Chem. Soc., 124(51):15198–15207, 2002.

    Article  Google Scholar 

  113. A.V. Kabanov, E.V. Batrakova, and V.Y. Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control Rel., 82(2–3):189–212, 2002.

    Article  Google Scholar 

  114. A.V. Kabanov and V.Y. Alakhov. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst., 19(1):1–72, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Leong, K.W. (2006). Polymer Design for Nonviral Gene Delivery. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics