Skip to main content

Characterization Methods for Quality Control of Nanopore and Nanochannel Membranes

  • Chapter

Abstract

Nanotechnology is considered a fascinating subject not only by scientists, but also by people not involved in research. Likely, the appeal derives from common people thinking of nanotech devices as “invisible, mysterious objects”, capable of accomplishing complex tasks. Such a mysterious feeling can be explained by the fact that nanodevices features cannot be entrapped, because of their dimensions, by the common experience of human sensing, like other systems, exhibiting much more complex structures or functions, but macroscopic dimensions (e.g. airplanes, robots, skyscrapers).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mulder. Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1991.

    Google Scholar 

  2. R.W. Baker. Membrane Technology and Applications, John Wiley & Sons, 2004.

    Google Scholar 

  3. S. Nakao. Determination of pore size and pore size distribution 3. Filtration membranes, J. Membrane Sci., 96:131–165, 1994.

    Article  Google Scholar 

  4. R.L. Riley, J.O. Gardner, and U. Merten. Science, 143:801, 1964.

    Article  Google Scholar 

  5. U. Merin and M. Cheryan. Ultrastructure of the surface of a polysulfone ultrafiltration membrane. J. Appl. Polym. Sci., 25:2139–2142, 1980.

    Article  Google Scholar 

  6. M. Koutake, Y. Uchida, T. Kimura, Y. Sagara, A. Watanabe, and S. Nakao. Observation of UF membranes pores through a scanning electron microscope and their pure water fluxes. Maku, 10:310–312, 1985.

    Google Scholar 

  7. K.J. Kim, A.G. Fane, C.J.D. Fell, T. Suzuki, and M.R. Dickson. Quantitative microscopic study of surface characteristics of ultrafiltration membranes. J. Membrane Sci., 54:89–102, 1990.

    Article  Google Scholar 

  8. K.J. Kim, A.G. Fane, C.J.D. Fell, and D.C. Joy. Fouling mechanisms of membranes during protein ultrafiltration. J. Membrane Sci., 68:79–91, 1992.

    Article  Google Scholar 

  9. S. Manabe, Y. Shigemoto, and K. Kamide. Determination of pore radius distribution of porous polymeric membranes by electron microscopic method. Polym. J., 17:775–785, 1985.

    Article  Google Scholar 

  10. H. Vivier, M.-N. Ponsand, and J.-F. Portala. Study of microporous membrane structure by image analysis. J. Membrane Sci., 46:81–91, 1989.

    Article  Google Scholar 

  11. I. Masselin, L. Durand-Bourlier, J.-M. Laine, P.-Y. Sizaret, X. Chasseray, and D. Lemordant. Membrane characterization using microscopic image analysis. J. Membrane Sci., 186:85–96, 2001.

    Article  Google Scholar 

  12. W. Yoshida and Y. Cohen. Topological AFM characterization of graft polymerized silica membranes. J. Membrane Sci., 215:249–264, 2003.

    Article  Google Scholar 

  13. W.R. Bowen, N. Hilal, R. Lovitt, and P. Williams. Atomic force microscope studies of membranes: surface pore structures of diaflo ultrafiltration membranes. J. Colloid Interface Sci., 180:350, 1996.

    Article  Google Scholar 

  14. W.R. Bowen, N. Hilal, R. Lovitt, and P. Williams.Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution. J. Membrane Sci., 110:229, 1996.

    Article  Google Scholar 

  15. W.R. Bowen and T. Doneva. Atomic force microscopy studies of nanofiltration membranes: surface morphology. Desalination, 129:163, 2000.

    Article  Google Scholar 

  16. N.A. Ochoa, P. Pradános, L. Palacio, C. Pagliero, J. Marchese, and A. Hernández. Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: characterization of polyethersulfone UF membranes with dopes containing different PVP. J. Membrane Sci., 187:227, 2001.

    Article  Google Scholar 

  17. A.K. Fritzsche, A.R. Arevalo, M.D. Moore, V.B. Elings, K. Kjoller, and C.M. Wu. The surface structure and morphology of polyvinylidene fluoride microfiltration membrane by atomic force microscopy. J. Membrane Sci., 68:65, 1992.

    Article  Google Scholar 

  18. J.Y. Kim, H.K. Lee, and S.C. Kim. Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscope. J. Membrane Sci., 164:159, 1999.

    Article  Google Scholar 

  19. J.M. Tan and T. Matsuura. Effect of nonsolvent additive on the surface morphology and the gas separation performance of poly(2,6-dimethyl-1,4-phenylene)oxide membranes. J. Membrane Sci., 160:7, 1999.

    Article  Google Scholar 

  20. E.M. Vrijenhoek, S. Hong, and M. Elimelech. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membrane Sci., 188(1):115, 2001.

    Article  Google Scholar 

  21. W.R. Bowen and T. Doneva. Atomic force microscopy studies of membranes: effect of surface roughness on double-layer interactions and particle adhesion. J. Colloid Interface Sci., 229:544, 2000.

    Article  Google Scholar 

  22. W.R. Bowen, N. Hilal, R. Lovitt, and C.J. Wright. A new technique for membrane characterisation: direct measurement of the force of adhesion of a single particle using an atomic force microscope. J. Membrane Sci., 139:269, 1998.

    Article  Google Scholar 

  23. E. Smorgonskaya, R. Kyutt, A. Danishevskii, C. Jardin, R. Meaudre, O. Marty, S. Gordeev, and A. Grechinskaya. X-ray and HRTEM structural studies of bulk nanoporous carbon materials produced from carbides. J. Non-Cryst. Solids, 299–302:810–814, 2002.

    Article  Google Scholar 

  24. E. Jakobs and W.J. Koros. Ceramic membrane characterization via the bubble point technique. J. Membrane Sci., 124:149–159, 1997.

    Article  Google Scholar 

  25. F.A.L. Dullien. Porous Media, Fluid Transport and Structure. Academic Press, New York, 1992.

    Google Scholar 

  26. R.J. Good and R.R. Stromberg. Surf. Colloid Sci., Vol. 11, p. 1, 1979.

    Google Scholar 

  27. H. Yasuda and J.T. Tsai. Pore size of microporous polymer membranes. J. Appl. Polym. Sci., 18:805–819, 1974.

    Article  Google Scholar 

  28. Y. Shimizu, H. Akabane, A. Tanioka, K. Miyasaka, and K. Ishikawa. Effects of estension on the gas permeability of hard elastic polypropylene films. J. Polym. Sci., Polym. Phys. Ed., 17:1495–1506, 1979.

    Article  Google Scholar 

  29. I. Cabasso, K.Q. Robert, E. Klein, and J.K. Smith. Porosity and pore size determination in polysulfone hollow fibers. J. Appl. Polym. Sci., 21:1883–1900, 1977.

    Article  Google Scholar 

  30. A. Kakuta, M. Kuramoto, M. Ohno, H. Kushida, A. Tanioka, and K. Ishikawa. Freeze-dried cellulose acetate membrane fine-structure observation. J. Polym. Sci., Polym. Chem. Ed., 18:3229–3243, 1980.

    Article  Google Scholar 

  31. F.W. Altena, H.A.M. Knoef, H. Heskamp, D. Bargeman, and C.A. Smolders. Some comments on the applicability of gas permeation methods to characterize porous membranes based on improved experimental accuracy and data handling. J. Membrane Sci., 12:313–322, 1983.

    Article  Google Scholar 

  32. D.L. Meixner and P.N. Dyer. Characterization of the transport properties of microporous inorganic membranes. J. Membrane Sci., 140:81–95, 1998.

    Article  Google Scholar 

  33. G. Capanelli, F. Vigo, and S. Munari. Ultrafiltration membranes—Characterization methods. J. Membrane Sci., 15:289, 1983.

    Article  Google Scholar 

  34. F.P. Cuperus, D. Bargeman, and C.A. Smolders. Permoporometry. The determination of the size distribution of active pores in UF membranes. J. Membrane Sci., 71:57–67, 1992.

    Article  Google Scholar 

  35. M.G. Katz and G. Baruch. New insights into the structure of microporous membranes obtained using a new pore size evaluation method. Desalination, 58:199–211, 1986.

    Article  Google Scholar 

  36. A. Mey-Marom and M.G. Katz. Measurement of active pore size distribution of microporous membranes—a new approach. J. Membrane Sci., 27:119–130, 1986.

    Article  Google Scholar 

  37. F.P. Cuperus, D. Bargeman, and C.A. Smolders. Thermoporometry and Permoporometry Applied to UF-Membrane Characterization. Proceedings of the InternationWorkshop on Characterization of Ultrafiltration Membranes, pp. 115–124, 1987.

    Google Scholar 

  38. G.Z. Cao, J. Meijerink, H.W. Brinkman, and A.J. Burgraaf. Permoporometry study on the size distribution of active pores in porous ceramic membranes. J. Membrane Sci., 83:221–235, 1993.

    Article  Google Scholar 

  39. A. Hazri and A.M. Vayda. A new computational technique for the analysis of diffusion permporometric data for asymmetric membranes. J. Membrane Sci., 101:61–66, 1995.

    Article  Google Scholar 

  40. M. Brun, A. Lallemand, J.-F. Quinson, and C. Eyraud. A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry. Thermochim. Acta, 21:59–88, 1977.

    Article  Google Scholar 

  41. C.A. Smolders and E. Vugteveen. New characterization methods for asymmetric ultrafiltration membranes. Mater. Sci. Synth. Membr., 327–338, 1985.

    Google Scholar 

  42. L. Zeman, G. Tkacik, and P. Le Parlouer. Pore volume distribution in UF membranes. Mater. Sci. Synth. Membr., 339, 1985.

    Google Scholar 

  43. L. Zeman, G. Tkacik, and P. Le Parlouer. Characterization of porous sublayers in UF membranes by thermoporometry. J. Membrane Sci., 32:329–337, 1987.

    Article  Google Scholar 

  44. M. Wulff. Pore size determination by permoporometry using acetonitrile, Thermochim. Acta, 419:291–294, 2004.

    Article  Google Scholar 

  45. A. Carbonaro, R. Walczak, P.M. Calderale, and M. Ferrari. Nano-pore silicon membrane characterization by diffusion and electrical resistance. J. Membrane Sci., 241:249–255, 2004.

    Article  Google Scholar 

  46. A. Szymczyk, B. Aoubiza, P. Fievet, and J. Pagetti. Electrokinetic phenomena in homogenous cylindrical pores. J. Colloid Interf. Sci., 216:285–296, 1999.

    Article  Google Scholar 

  47. P. Fievet, A. Szymczyk, B. Aoubiza, and J. Pagetti. Evaluation of three methods for the characterization of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J. Membrane Sci., 168:87–100, 2000.

    Article  Google Scholar 

  48. A. Szymczyk, P. Fievet, B. Aoubiza, C. Simon, and J. Pagetti. An application of the space charge model to the electrolyte conductivity inside a charged microporous membrane. J. Membrane Sci., 161:275–285, 1999.

    Article  Google Scholar 

  49. T.E. Gómez álvarez-Arenas. Air coupled ultrasonic spectroscopy for the study of membrane filters. J. Membrane Sci., 213:195–207, 2003.

    Article  Google Scholar 

  50. W. Sachse and Y. Pao. On the determination of phase and group velocity of dispersive waves in solids. J. Appl. Phys., 49(8):4320–4327, 1978.

    Article  Google Scholar 

  51. N.F. Haines, J.C. Bell, and P.J. McIntyre. The application of broadband ultrasonic spectroscopy to the study of layered media. J. Acoust. Soc. Am., 64(6):1645–1651, 1978.

    Article  Google Scholar 

  52. R.A. Peterson, A.R. Greenberg, L.J. Bond, and W.B. Krantz. Use of ultrasonicTDRfor real-time non-invasive measurement of compressive strain during membrane compaction. Desalination, 116:115–122, 1998.

    Article  Google Scholar 

  53. A.P. Mairal, A.R. Greenberg, W.B. Krantz, and L.J. Bond. Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry. J. Membrane Sci., 159:185–196, 1999.

    Article  Google Scholar 

  54. A.P. Mairal, A.R. Greenberg, and W.B. Krantz. Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination, 130:45–60, 2000.

    Article  Google Scholar 

  55. V.E. Reinsch, A.R. Greenberg, S.S. Kelley, R. Peterson, and L.J. Bond.Anewtechnique fort he simultaneous, real-time measurement of membrane compaction and performance during exposure to high-pressure gas. J. Membrane Sci., 171:217–228, 2000.

    Article  Google Scholar 

  56. J. Li, R.D. Sanderson, and E.P. Jacobs. Non-invasive visualization of the fouling of microfiltration membranes by ultrasonic time-domain reflectometry. J. Membrane Sci., 201:17–29, 2002.

    Article  Google Scholar 

  57. M.E. Delany and E.N. Bazley. acoustical properties of fibrous absorbent materials. Appl. Acoust., 3:105–116, 1970.

    Article  Google Scholar 

  58. W. Qunli. Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Appl. Acoust., 25:141–148, 1988.

    Article  Google Scholar 

  59. R.N. Chandler and D. Linton-Johnson. The equivalence of quasi-static flow in fluid-saturated porous media and the Biot’s slow wave in the limit of zero frequency. J. Appl. Phys., 52:3391–3395, 1981.

    Article  Google Scholar 

  60. D. Linton-Johnson, T. Plona, C. Scala, F. Pasieb, and H. Kojima. Tortuosity and acoustic slow waves. Phys Rev. Lett., 49:1840–1844, 1982.

    Article  Google Scholar 

  61. D. Linton-Johnson, J. Koplik, and L-M-Schwartz. New pore-size parameter characterizing transport in porous media. Phys Rev. Lett., 57:2564–2567, 1986.

    Article  Google Scholar 

  62. P. Nagy and L. Adler. Slow wave propagation in air-filled porous materials and in natural rocks. Appl. Phys. Lett., 56:2504–2506, 1990.

    Article  Google Scholar 

  63. T. Schlief, J. Gross, and J. Fricke. Ultrasonic attenuation in silica aerogels. J. Non-Cryst. Solids, 145:223–226, 1992.

    Article  Google Scholar 

  64. J. Stor-Pellinen, E. Haeggström, and M. Luukkala. Measurement of paper-wetting processes by ultrasound transmission. Meas. Sci. Technol., 1:406–411, 2000.

    Article  Google Scholar 

  65. O. Kedem and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes. Biochim. Biophys. Acta, 27:229, 1958.

    Article  Google Scholar 

  66. K.S. Spiegler and O. Kedem. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination, 1:311, 1966.

    Article  Google Scholar 

  67. N.A. Peppas and D.L. Meadows, Macromolecular structure and solute diffusion in membranes: an overview of recent theories. J. Membrane Sci., 16:361–377, 1983.

    Article  Google Scholar 

  68. B.C. Robertson and A.L. Zydney. A Stefan-Maxwell analysis of protein transport in porous membranes. Sep. Sci. Technol., 23:1799–1811, 1988.

    Google Scholar 

  69. J.D. Ferry. Statistical evaluation of sieve constants in ultrafiltration, J. Gen. Physiol., 20:95, 1936.

    Article  Google Scholar 

  70. E.M. Renkin. Filtration, diffusion and molecular sieving through porous cellulose membranes, J. Gen. Physiol., 38:225, 1954.

    Google Scholar 

  71. J.R. Pappenheimer, E.M. Renkin, and L.M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am. J. Physiol., 167:12, 1951.

    Google Scholar 

  72. J.R. Pappenheimer. Passage of molecules through capillary walls. Am. J. Physiol., 22:387, 1953.

    Google Scholar 

  73. R. Ladenburg. über den Einflu\ vonWänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit. Ann. Phys., (Leipzig), 23:447, 1907.

    Article  Google Scholar 

  74. H. Faxen. Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Ark. Mat. Astron. Fys., 17:1, 1923.

    Google Scholar 

  75. A.K. Solomon. Characterization of biological membranes by equivalent pores. J. Gen. Physiol., 15:355, 1968.

    Google Scholar 

  76. W.L. Haberman and R.M. Sayre. Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes, David Taylor Model basin Report No. 1143, Department of the Navy, U.S., 1958.

    Google Scholar 

  77. T. Bohlin. On the drag on a rigid sphere moving in a viscous liquid inside a cylindrical tube. Trans. R. Insti. Technol. Stockholm, 155, 1960.

    Google Scholar 

  78. A. Verniory, R. Du Bois, P. Decoodt, J.P. Gassee, and P.P. Lambert. Measurement of the permeability of biological membranes. J. Gen. Physiol., 62:489, 1973.

    Article  Google Scholar 

  79. F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino, and M. Ferrari. Tailoring width of microfabricated nano-channels to solute size can be used to control diffusion kinetics, accepted for publication on J. Control. Rel.

    Google Scholar 

  80. C. Cosentino, F. Amato, A. Boiarski, and M. Ferrari. A dynamic model of biomolecules diffusion through two-dimensional nanochannels, submitted to J. Phys. Chem. A.

    Google Scholar 

  81. W.H. Chu, R. Chin, T. Huen, and M. Fermi, Silicon membrane nanofilters from sacrificial oxide removal. J. MicroelectroMech. Syst., 8(1): 1999.

    Google Scholar 

  82. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari. Nanopore technology for biomedical applications. J. Biomed. Microdev., 2(1):11–40, 1999.

    Article  Google Scholar 

  83. T.A. Desai, D. Hansford, and M. Ferrari. Characterization of micromachined membranes for immunoisolation and bioseparation applications. J. Membrane Sci., 159:221–231, 1999.

    Article  Google Scholar 

  84. T. Meersmann, J.W. Logan, R. Simonutti, S. Caldarelli, A. Comotti, P. Sozzani, L.G. Kaiser, and A. Pines. Exploring Single-File Diffusion in One-Dimensional Nanochannels by Laser-Polarized 129Xe NMR Spectroscopy. J. Phys. Chem. A, 104:11665–11670, 2000.

    Article  Google Scholar 

  85. Q. Wei, C. Bechinger, and P. Leiderer. Single-file diffusion of colloids in one-dimensional channels. Science, 287:625–627, 2000.

    Article  Google Scholar 

  86. V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L.V.C. Rees, S. Schunk, K.K. Unger, and J. Karger. NMR studies of single-file diffusion in unidimensional channel zeolites. Science, 272:702–704, 1996.

    Article  Google Scholar 

  87. V. Gupta, S.S. Nivarthi, D. Keffer, A.V. McCormick, and H.T. Davis. Evidence of single-file diffusion in zeolites. Science, 274:164, 1996.

    Article  Google Scholar 

  88. K. Hahn, J. Karger, and V.V. Kukla. Single file-diffusion observation. Phys. Rev. Lett., 76:2762–2765, 1996.

    Article  Google Scholar 

  89. P. Nelson and S. Auerbach. Self-diffusion in single file zeolite membranes is Fickian at long times. J. Chem. Phys., 110:9235–9244, 1999.

    Article  Google Scholar 

  90. J.M.D. MacElroy and S.H. Suh. Self-diffusion in single-file pores of finite length. J. Chem. Phys., 106:8595–8597, 1997.

    Article  Google Scholar 

  91. D.G. Levitt. Dynamics of a single-file pore: non-fickian behaviour. Phys. Rev. A, 8:3050–3054, 1973.

    Article  Google Scholar 

  92. B. Lin, J. Yu, and S.A. Rice. Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E, 62:3909–3919, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Cosentino, C., Amato, F., Ferrari, M. (2006). Characterization Methods for Quality Control of Nanopore and Nanochannel Membranes. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics