Skip to main content

Nanomechanics and Tissue Pathology

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Nanotechnology is an emerging field that has been embraced by those in clinical medicine. The most novel aspect of nanotechnology is the ability to precisely fabricate devices on a physical scale heretofore only realized in science fiction. Most notable medical applications have involved micro-sized devices with integrated micro- and/or nano-scale features used for controlled drug delivery or biomolecular analysis. BioMEMS (Biological Micro-Electro-Mechanical Systems) devices have served as conduits for nanotechnology to enter clinical medicine. However, new theoretical applications will further assert nanotechnology as a multifaceted biomedical discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ferrari, V.T. Granik, A. Imam, and J.C. Nadeau. Advances in Doublet Mechanics, Springer-Verlag, New York, Inc., New York, 1997.

    MATH  Google Scholar 

  2. H. Verkooijen et al. Interobserver variability between general and expert pathologists during the histopathological assessment of large-core needle and open biopsies of non-palpable breast lesions. Eur. J. Can., 39:2187–2191, 2003.

    Article  Google Scholar 

  3. M. Piver et al. Comparative study of ovarian cancer histopathology by registry pathologists and referral pathologists: A study by the Gilda Radner Familial Ovarian Cancer Registry. Gynecol. Oncol. 78:166–170, 2000.

    Article  Google Scholar 

  4. R. Schlemper et al. Differences in diagnostic criteria for esophageal squamous cell carcinoma between Japanese and Western pathologists. Cancer, 88:996–1006, 2000.

    Article  Google Scholar 

  5. B. Dunne and J.J. Going. Scoring nuclear pleomorphism in breast cancer. Histopathology, 39:259–265, 2001.

    Article  Google Scholar 

  6. H. Tsuda et al. Evaluation of interobserver agreement in scoring immunohistochemical results of HER-2/neu (c-erbB-2) expression detected by HercepTest, Nichirei polyclonal antibody, CB11 and TAB250 in breast carcinoma. Pathol. Internat. 52:126–134, 2002.

    Article  Google Scholar 

  7. A. Paradiso et al. Interobserver reproducibility of immunohistochemical HER-2/neu evaluation in human breast cancer: the real-world experience. Internat. J. Biol. Mark. 19:147–154, 2004.

    Google Scholar 

  8. National Cancer Institute; “Breast Cancer (PDQ): Screening”, National Institute of Health; http://www.nci. nih.gov/cancertopics/pdq/screening/breast/HealthProfessional/page4:http://www.nci.nih.gov/cancertopics/ pdq/screening/breast/HealthProfessional/page4 (2004).

    Google Scholar 

  9. Czyz, A.H. “Breast Cancer Diagnosis: Histologic Grades of Breast Cancer: Helping Determine a Patient’s Outcome”, Imaginis.com; http://imaginis.com/breasthealth/histologic grades.asp?mode=1:http://imaginis. com/breasthealth/histologic grades.asp?mode=1; (2001).

    Google Scholar 

  10. S. Amatet al. Scarff-Bloom-Richardson (SBR) grading: a pleiotropic marker of chemosensitivity in invasive ductal breast carcinomas treated by neoadjuvant chemotherapy. Internat. J. Oncol. 20:791–796, 2002.

    Google Scholar 

  11. A. Douglas-Jones et al. Consistency in the observation of features used to classify duct carcinoma in situ (DCIS) of the breast. J. Clin. Pathol., 53:596–602, 2000.

    Article  Google Scholar 

  12. A. Volpi et al. Prognostic significance of biologic markers in node-negative breast cancer patients: a prospective study. Mod. Pathol., 17:1038–1044, 2004.

    Article  Google Scholar 

  13. H. Tsuda, E. Akiyama, M. Kurosumi, G. Sakamoto, and T. Watanabe. A quantitative model using mean and standard deviation for evaluation of interobserver agreement in nuclear atypia scoring of breast carcinomas in a protocol study. Pathol. Internat., 50:119–125, 2000.

    Article  Google Scholar 

  14. M. Sikka, S. Agarwal and A. Bhatia. Interobserver agreement of the Nottingham histologic grading scheme for infiltrating duct carcinoma breast. Ind. J. Can., 36:149–153, 1999.

    Google Scholar 

  15. H. Frierson et al. Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am. J. Clin. Pathol., 103:195–198, 1995.

    Google Scholar 

  16. R.P. Burns. Image-guided breast biopsy. Am. J. Surg., 173:9–11, 1997.

    Article  Google Scholar 

  17. F. Burbank. Stereotactic breast biopsy: Its history, its present, and its future. Am. Surg., 62:128–150, 1996.

    Google Scholar 

  18. R. Cotran, V. Kumar, and T. Collins. Pathologic Basis of Disease, 6th. Ed. 6th.W.B. Saunders, Philadelphia; 1999.

    Google Scholar 

  19. M.S. Brady et al. Patterns of detection in patients with cutaneous melanoma. Cancer, 89:342–347, 2000.

    Article  Google Scholar 

  20. C.M.K. Grin, A, B. Welkovich, and R. Bart. Accuracy of clinical diagnosis of malignant melanoma. Arch. Dermatol., 126:763–766, 1990.

    Article  Google Scholar 

  21. J.L. Bolognia, M. Berwick, and J.A. Fine. Complete follow-up and evaluation of a skin cancer screening in Connecticut. J. Am. Dermatol., 23:1098–1106, 1990.

    Article  Google Scholar 

  22. American Cancer Society, Vol. 2004 1–50, American Cancer Society, Atlanta; 2003.

    Google Scholar 

  23. M. Helfand, S.M. Mahon, K.B. Eden, P.S. Frame, and C.T. Orleans. Screening for skin cancer. Am. J. Preven. Med., 20:47–58, 2001.

    Article  Google Scholar 

  24. T.E. Andreoli, J. Loscalzo, C.C.J. Carpenter, and R.C. Griggs. Cecil Essentials of Medicine, 5th. Ed. W.B. Saunders Co, Philadelphia; 2000.

    Google Scholar 

  25. R. Cotran, V. Kumar, and T.C. Pathologic Basis of Disease, W.B. Saunders, Philadelphia; 1999.

    Google Scholar 

  26. C.R. Hill, J.C. Bamber, and G.R.t. Haar (eds.) Physical Principles of Medical Ultrasonics, John Wiley & Sons, Hoboken, NJ, 2004.

    Google Scholar 

  27. P.N.T. Wells. Ultrasonic imaging of the human body. Rep. Prog. Phys., 62:671–722, 1999.

    Article  Google Scholar 

  28. F.A. Duck. Physical Properties of Tissue. Academic Press, London, 1990.

    Google Scholar 

  29. S.A. Goss, R.L. Johnston, and F. Dunn. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am., 64:423–457, 1978.

    Article  Google Scholar 

  30. A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, and S.Y. Emelianov. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol., 24:1419–1435, 1998.

    Article  Google Scholar 

  31. L. Sandrin, M. Tanter, S. Catheline, and M. Fink. Shear modulus imaging with 2-D transient elastography. IEEE Trans. Ultrason. Ferro. Freq. Contrl., 49:426–435, 2002.

    Article  Google Scholar 

  32. V.N. Alekseev and S.A. Rybak. Equations of state for viscoelastic biological media. Acoust. Phys., 48:511–547, 2002.

    Article  Google Scholar 

  33. T.L. Szabo and J. Wu. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am., 107:2437–2446, 2000.

    Article  Google Scholar 

  34. K.R. Waters, M.S. Hughes, J. Mobley, G.H. Brandenburger, and J.G. Miller. On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law. J. Acoust. Soc. Am., 108:556–563, 2000.

    Article  Google Scholar 

  35. T.L. Szabo. Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am., 97:14–24, 1995.

    Article  Google Scholar 

  36. A. Lavrentyev and S.I. Rokhlin. Determination of elastic moduli, density, attenuation, and thickness of a layer using ultrasonic spectroscopy at two angles. J. Acoust. Soc. Am., 102:3467–3477, 1997.

    Article  Google Scholar 

  37. L. Adler, K.V. Cook, and W.A. Simpson. In Research Techniques in Nondestructive Testing, Vol. 3. R.S. Wang (ed.) Academic Press, New York, 1977, pp. 1–49.

    Google Scholar 

  38. L. Wang and S.I. Rokhlin. Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics, 39:413–424, 2001.

    Article  Google Scholar 

  39. L.Wang, B. Xie, and S.I. Rokhlin. Determination of embedded layer properties using adaptive time-frequency domain analysis. J. Acoust. Soc. Am., 111:2644–2653, 2002.

    Article  Google Scholar 

  40. J. Liu. Biomedical Engineering, The Ohio State University, Columbus, 2002.

    Google Scholar 

  41. J. Liu and M. Ferrari. A discrete model for the high frequency elastic wave examination on biological tissue. CMES, 4:421–430, 2003.

    MATH  Google Scholar 

  42. J. Liu and M. Ferrari. Mechanical spectral signatures of malignant disease? A small-sample, comparative study of continuum vs. nano-biomechanical data analyses. Dis. Mark., 18:175–183, 2002.

    Google Scholar 

  43. NDT Resource Center; “Basic Principles of Ultrasonic Testing”, Iowa State University:http://www.ndted. org/EducationResources/communitycollege/ultrasonics/introduction/description.htm; (2001).

    Google Scholar 

  44. A.F. van der Steen, M.H. Cuypers, J.M. Thijssen, and P.C. deWilde. Influence of histochemical preparation on acoustic parameters of liver tissue: a 5-MHz study. Ultrasou. Med. Biol., 17:879–891, 1991.

    Article  Google Scholar 

  45. S.I. Rokhlin and Y.J. Wang. Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am., 503, 1991.

    Google Scholar 

  46. H.K.W. Koeppen et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology, 38:96–104, 2001.

    Article  Google Scholar 

  47. N.E. Hynes and D.F. Stern. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta., 1198:165–184, 1994.

    Google Scholar 

  48. I.F. Tannock and R.P. Hill. (eds.) The Basic Science of Oncology, 3rd Edn. McGraw-Hill, New York, 1998.

    Google Scholar 

  49. J.M.S. Bartlett et al. Evaluating HER2 Amplification and Overexpression in Breast Cancer. J. Pathol., 195:422–428, 2001.

    Article  Google Scholar 

  50. M. Pegram, G. Pauletti, and D.J. Slamon. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Can. Res. Treat., 52:65–77, 1998.

    Article  Google Scholar 

  51. S. Masood, and M.M. Bui. Prognostic and Predictive Value of HER2/neu Oncogene in Breast Cancer. Microsco. Res. Tech., 59:102–108, 2002.

    Article  Google Scholar 

  52. S. Menard, E. Tagliabue, M. Campiglio, and S.M. Pupa. Role of HER2 Gene Overexpression in Breast Carcinoma. J. Cell. Physiol., 182:150–162, 2000.

    Article  Google Scholar 

  53. R.M. Neve, H.A. Lane, and N.E. Hynes. The role of overexpressed HER2 in transformation. Ann. Oncol., 12:S9–S13, 2001.

    Article  Google Scholar 

  54. D.J. Slamon et al. Studies of the HER-2/neu Proto-Oncogene in Human Breast and Ovarian Cancer. Sci., New Series, 244:707–712, 1989.

    Google Scholar 

  55. G.M. Lanza et al. In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J. Acoust. Soc. Am., 104:36–65, 1998.

    Article  Google Scholar 

  56. P.A. Dayton and K.W. Ferrara. Target imaging using ultrasound. J. Mag. Reson. Imag., 16:362–377, 2002.

    Article  Google Scholar 

  57. C.S. Hall et al. Experimental determination of phase velocity of perfluorocarbons: applications to targeted contrast agents. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 47:75–84, 2000.

    Article  Google Scholar 

  58. D.N. Patel, S.H. Bloch, P.A. Dayton, and K.W. Ferrara. Acoustic signatures of submicron contrast agents. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 51:293–301, 2004.

    Article  Google Scholar 

  59. E. Unger, T.O. Matsunaga, P.A. Schumann, and R. Zutsh. Microbubbles in molecular imaging and theraphy. Medicamundi, 47:58–65, 2003.

    Google Scholar 

  60. N. Marsh et al. Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 49:29–38, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Sakamoto, J. et al. (2006). Nanomechanics and Tissue Pathology. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics