Skip to main content

Nanodevices in Biomedical Applications

  • Chapter
Book cover BioMEMS and Biomedical Nanotechnology

Abstract

In the early 21st century, nanotechnology is a field in rapid flux and development, and definition of its boundaries can be elusive. Aspects of multiple disciplines, ranging from physics to computer science to biotechnology, legitimately contribute to the endeavor. This breadth of field allows many interested parties to contribute to nanotechnology, but the same ambiguity can effectively render the field indistinct. The precise definition of nanotechnology remains debatable, so consideration of the present scope of the field may be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Arap, W. Haedicke, M. Bernasconi, R. Kain, D. Rajotte, S. Krajewski, M. Ellerby, R. Pasqualini, and E. Ruoslahti. Targeting the prostate for destruction through a vascular address. Proc. Natl. Acad. Sci. U.S.A., 99, 2002a.

    Google Scholar 

  2. W. Arap, M. Kolonin, M. Trpel, J. Lahdenranta, M. Cardo-Vila, R. Giordano, P.J. Mintz, P. Ardelt, V. Yao, C. Vidal, L. Chen, A. Flamm, H. Valtanen, L.M. Weavind, M.E. Hicks., R. Pollock, G.H. Botz, C.D. Bucana, E. Koivunen, D. Cahil, P. Troncosco, K.A. Baggerly, R.D. Pentz, K.-A. Do, C. Logothetis, and R. Pasqualini. Steps towards mapping the human vasculature by phage display. Nature Med., 8:121–127, 2002b.

    Article  Google Scholar 

  3. D.F. Baban and L.W. Seymour. Control of tumor vascular permeability. Adv. Drug Deliv. Rev., 34:109–119, 1998.

    Article  Google Scholar 

  4. J. Baish, Y. Gazit, D. Berk, M. Nozue, and L.T. Baxter. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res., 51:327–346, 1996.

    Article  Google Scholar 

  5. J.R. BakerJr. Therapeutic nanodevices. In S.C. Lee and L. Savage (eds.) Biological molecules in nanotechnology: the convergence of biotechnology, polymer chemistry and materials science. IBC Press, Southborough, MA, pp. 173–183, 1998.

    Google Scholar 

  6. J.R. BakerJr., A. Quintana, L. Piehler, M. Banazak-Holl, D. Tomalia, and E. Racka. The synthesis and testing of anti-cancer therapeutic nanodevices. BMMD., 3:61–69, 2001.

    Google Scholar 

  7. R. Barreiro-Iglesias, L. Bromberg, M. Temchenko, T.A. Hatton, A. Concheiro, and C. Alvarez-Lorenzo. Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. J. Contr. Rel., 97: 537–549, 2004.

    Google Scholar 

  8. P.N. Bartlett and Y. Astier. Microelectrochemical enzyme transistors. Chem. Comm., 2000.

    Google Scholar 

  9. G. Biddlecombe, Y. Gun’ko, J. Kelly, S. Pillai, J. Coey, M. Ventatesan, and A. Douvalis. Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor. J. Mater. Chem., 11:2937–2939, 2001.

    Article  Google Scholar 

  10. J. Borenstein, H. Terai, K. King, E. Weinberg, M. Kaazempour-Mofrad, and J. Vacanti. Microfabrication technology for vascularized tissue engineering. Biomed. Microdev., 4:167–175, 2002.

    Article  Google Scholar 

  11. F. Breitling and S. Dubel. Recombinant Antibodies. John Wiley & Sons, London, 1998.

    Google Scholar 

  12. M. Brown and R. Semelka. MRI: Basic Principles and Applications. JohnWiley and Sons, Inc., New York, 1999.

    Google Scholar 

  13. D.M. Brown, M. Pellecchia, and E. Ruoslahti. Drug Identification through in vivo Screening of Chemical Libraries. ChemBioChemical, 5:871–875, 2004.

    Article  Google Scholar 

  14. C. Brunner, K.-H. Ernst, H. Hess, and V. Vogel. Lifetime of biomolecules in polymer-based hybrid nanodevices. Nanotechnol., 15:S540–S548, 2004.

    Article  Google Scholar 

  15. W.D. Callister Jr. Material Science and Engineering: An Introduction. JohnWiley & Sons, Inc., New York, 1997.

    Google Scholar 

  16. C.N. Campbell. How far are we from detecting single bioconjugation events? In S.C. Lee and L. Savage, (eds.) Biological Molecules in Nanotechnology: the Convergence of Biotechnology, polymer chemistry and materials science. IBC Press, Southborough, MA. pp. 163–171, 1998.

    Google Scholar 

  17. R.C. Carlisle, T. Etrych, S.S. Briggs, J.A. Preece, K. Ulbrich, and L.W. Seymour. Polymer-coated polyethylenimine/DNA complexes designed for triggered activations by intracellular reduction. J. Gene Med., 6:337–344, 2004.

    Article  Google Scholar 

  18. G. Cevc. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Del. Rev., 56:675–711, 2004..

    Article  Google Scholar 

  19. B.-X. Chen, S.R. Wilson, M. Das, D.J. Coughlin, and B.F. Erlanger. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc. Natl. Acad. Sci. U.S.A., 95:10809–10813, 1998.

    Article  Google Scholar 

  20. W.B. Choi, E. Bae, D. Kang, S. Chae, B.-h. Cheong, J.-h. Ko, E. Lee, and W. Park. Aligned carbon nanotubes for nanoelectronics. Nanotechnology, 15:S512–S516, 2004.

    Article  Google Scholar 

  21. D.J.A. Crommelin and R.D. Sindelar. Pharmaceutical Biotechnology. Harwood Academic Publishers, Amsterdam, 1997.

    Google Scholar 

  22. J. Cumings and A. Zetti. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 289:602–604, 2000.

    Article  Google Scholar 

  23. J. Davies. Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In V. Lorian (ed.) Antibiotics in Laboratory Medicine. Williams and Wilkins, Baltimore. pp. 474–489, 1980.

    Google Scholar 

  24. S.S. Davis. Biomedical applications of nanotechnology-implications fordrug targeting and gene therapy. Trends Biotechnol., 15:217–224, 1997.

    Article  Google Scholar 

  25. C. Dekker. Carbon nanotubes as molecular quantum wires. Phys. Today:22–28, 1999.

    Google Scholar 

  26. L.M. Demers, D.S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, and C.A. Mirkin. Direct patterning of modified oligonucleotides on metals and insulatos by dip-pen nanolithography. Science, 296:1836–1838, 2002.

    Article  Google Scholar 

  27. I.G. Denisov, Y.V. Grinkova, A.A. Lazarides, and S.G. Sligar. Directed Self-Assembly of Monodisperse Phospholipid Bilayer Nanodiscs with Controlled Size. J. Am. Chem. Soc., 126:3477–3487, 2004.

    Article  Google Scholar 

  28. W.A. Denny. The role of hypoxia activated prodrugs in cancer therapy. The Lancet Oncol., 1:25–29, 2000.

    Article  Google Scholar 

  29. T. Desai, D. Hansford, L. Kulinsky, A. Nashat, G. Rasi, J. Tu, Y.Wang, M. Zhang, and M. Ferrari. Nanopore technology for biomedical applications. BMMD, 21:11–40, 1999.

    Google Scholar 

  30. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari. Microfabricated immunoisolating biocapsules. Biotechnol. Bioeng., 57:118–120, 1998.

    Article  Google Scholar 

  31. E. Di Fabrisio, A. Nucara, M. Gentili, and R. Cingolani. Design of a beamline for soft and deep lithography on third generation synchrotron radiation source. Rev. Sci. Instrum., 70:1605–1613, 1999.

    Article  Google Scholar 

  32. W.U. Dittmer and F.C. Simmel. Chains of semiconductor nanoparticles templated on DNA. Appl. Phys. Lett., 85:633–635, 2004.

    Article  Google Scholar 

  33. K.E. Drexler. Engines of Creation: the Coming era of Nanotechnology. Anchor Books, New York, 1986.

    Google Scholar 

  34. H.Y. Du, M. Olivo, B.K.H. Tan, and B.H. Bay. Photoactivation of hypericin downregulates glutathione S-transferase activity in nasopharyngeal cancer cells. Cancer Lett., 207:175–181, 2004.

    Article  Google Scholar 

  35. R. Duncan. Drug targeting: where are we now and where are we heading? J. Drug Targ., 5:1–4, 1997a.

    MathSciNet  Google Scholar 

  36. R. Duncan. Polymer therapeutics for tumor specific delivery. Chem. Ind., 7:262–264, 1997b.

    Google Scholar 

  37. R. Duncan, S. Gac-Breton, R. Keane, Y.N. Sat, R. Satchi, and F. Searle. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J. Cont. Rel., 74:135–146, 2001.

    Article  Google Scholar 

  38. G.M. Dykes. Dendrimers: A review of their appeal and applications. J. Chem. Tech. Biotech., 76:903–918, 2001.

    Article  Google Scholar 

  39. A. Elster, S. Handel, and A. Goldman. Magnetic Resonance Imaging: A Reference Guide and Atlas. J.B. Lippincott Co., Philadelphia, 1997.

    Google Scholar 

  40. M. Essier and E. Ruoslahti. Molecular specialization of breast vasculature:Abreast homing phage displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. U.S.A., 99:2252–2257, 2002.

    Article  Google Scholar 

  41. S. Fawell, J. Seery, Y. Daikh, C. Moore, L.L. Chen, B. Pepinsky, and J. Barsoum. Tat-mediated delivery of heterologous proteins to cells. Proc. Natl. Acad. Sci. U.S.A., 91:664–668, 1994.

    Article  Google Scholar 

  42. S. Fernandez-Lopez, H.-S. Kim, E.C. Choi, M. Delgado, J.R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D.A. Weinberger, K.M. Wilcoxen, and M. Ghardiri. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature, 412:452–455, 2001.

    Article  Google Scholar 

  43. M. Ferrari and J. Liu. The engineered course of treatment. Mech. Eng., 123:44–47, 2001.

    Google Scholar 

  44. S. Flack, S. Fischer, M. Scott, R. Fuhrhop, J. Allen, M. McLean, P. Winter, G. Sicard, P. Gaffney, S. Wickline, and G. Lanza. Novel MRI contrast agent for molecular fibrin. Circulation, 104:1280–1285, 2001.

    Google Scholar 

  45. T. Gardner, C.R. Cantor, and J.J. Collins. Construction of a genetic toggle switch in Escherichia coli. Nature, 403:339–342, 2000.

    Article  Google Scholar 

  46. I.E. Gentle, D.P. De Souza, and M. Baca. Direct Production of Proteins with N-Terminal Cysteine for Site-Specific Conjugation. Bioconj. Chem., 15:658–663, 2004.

    Article  Google Scholar 

  47. M. Gerard, A. Chaubey, and B.D. Malhotra. Applications of conducting polymers to biosensors. Biosens. Bioelectron., 17:345–349, 2002.

    Article  Google Scholar 

  48. M.E. Gillogly, N.L. Kallinteris, M. Xu, J.V. Gulfo, R.E. Humphreys, and J.L. Murray. li-Key/Her-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer. Cancer Immunol. Immunother., 53:490–496, 2004.

    Article  Google Scholar 

  49. D.S. Ginger, H. Zhang, and C.A. Mirkin. The Evolution of Dip-Pen Nanolithography. Ang. Chem. Int. Ed., 43:30–45, 2003.

    Article  Google Scholar 

  50. D.S. Goldin, C.A. Dahl, K.L. Olsen, L.H. Ostrach, and R.D. Klausner. Biomedicine. The NASA-NCI collaboration on biomolecular sensors. Science, 292:443–444, 2001.

    Google Scholar 

  51. T.J. Golentz, K. Klimpel, S. Leppla, J.M. Keith, and J.A. Berzofsky. Delivery of antigens to the MHC class I pathway using bacterial toxins. Hum. Immunol., 54:129–136, 1997.

    Article  Google Scholar 

  52. R. Gordon. Computer controlled evolution of diatoms: design for a compustat. Nova Hedwigia, 112:215–219, 1996.

    Google Scholar 

  53. T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, and G. Schubert. Maskless electron beam lithography: propects, progress and challenges. Microelect. Eng., 61:285–293, 2002.

    Article  Google Scholar 

  54. A. Guiseppi-Elie, C. Lei, and R.H. Baughman. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 13:559–564, 2002.

    Article  Google Scholar 

  55. A. Gupta, D. Akin, and R. Bashir. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett., 84:1976–1978, 2004.

    Article  Google Scholar 

  56. M. Guthold, R. Superfine, and R. Taylor. The rules are changing: force measurements on single molecules and how they relate to bulk reaction kinetics and energies. BMMD, 3:9–18, 2001.

    Google Scholar 

  57. U.O. Hafeli. Magnetically modulated therapeutic systems. Int. J. Pharm., 277:19–24, 2004.

    Article  Google Scholar 

  58. D. Hallahan, L. Geng, S. Qu, C. Scarfone, T. Giorgio, E. Donnelly, X. Gao, and J. Clanton. Cancer Cell., 3:63, 2003.

    Article  Google Scholar 

  59. K. Hamad-Schifferli, J.J. Schwartz, A.T. Santos, S. Zhang, and J.M. Jacobson. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415:152–155, 2002.

    Article  Google Scholar 

  60. T. Hamouda, A. Myc, B. Donovan, A.Y. Shih, J.D. Reuter, and Jr. J.R. Baker. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res., 156:1–7, 2001.

    Article  Google Scholar 

  61. C.V. Harding and R. Song. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol., 152:4925–4933, 1994.

    Google Scholar 

  62. E. Harlow and D. Lane. Antibodies: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, 1989.

    Google Scholar 

  63. J.M. Harris, N.E. Martin, and M. Modi. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokin., 40:539–551, 2001.

    Article  Google Scholar 

  64. J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, and J.J. Collins. Designer gene networks: towards fundamental cellular control. Chaos, 11:107–220, 2001.

    Article  Google Scholar 

  65. M.J. Heller. Utilization of syntheticDNAfor molecular electronic and photonic-based device applications. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. 59–66, 1998.

    Google Scholar 

  66. G.T. Hermanson. Bioconjugate chemistry. Academic Press, San Diego, 1996.

    Google Scholar 

  67. A.S. Hoffman and P.S. Stayton. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol. Symp., 207:139–152, 2004.

    Article  Google Scholar 

  68. B. Ilic, H.G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil. Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys., 95:3694–3703, 2004.

    Article  Google Scholar 

  69. J.A. Hoffman, P. Laakkonen, K. Porkka, M. Bernasconi, and E. Ruoslahti. In T. Clackson, H. Lowman (eds.), Phage Display: A Practical Approach. Oxford University Press, Oxford, 2004b.

    Google Scholar 

  70. D. Hogemann, L. Josephson, R.Weissleder, and J. Basilion. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chem., 11:941–946, 2000.

    Article  Google Scholar 

  71. D.J. Hornbaker, S.-J. Kahng, S. Mirsa, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, and A. Yazdoni. Mapping the one-dimensional electronic states of nanotube peapod structures. Science, 295:828–831, 2002.

    Article  Google Scholar 

  72. G.A. Husseini, G.D. Myrup, W.G. Pitt, D. Christensen, and N.Y. Rapoport. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Cont. Rel., 69:43–52, 2000.

    Article  Google Scholar 

  73. F.A. Jaffer and R. Weissleder. Molecular Imaging of the Cardiovascular System. Circ. Res., 94:433, 2004.

    Article  Google Scholar 

  74. R.K. Jain. Delivery of molecular and cellular medicine to tumors. J. Cont. Rel.. 53:49–67, 1998.

    Article  Google Scholar 

  75. C.A. Janeway, P. Travers, M. Walport, and J.D. Capra. Immunobiology. Elsevier Science, London, 1999.

    Google Scholar 

  76. S.-Y. Jang, M. Marquez, and G.A. Sotzing. Rapid Direct Nanowriting of Conductive Polymer via Electrochemical Oxidative Nanolithography. J. Amer. Chem. Soc., 126:9476–9477, 2004.

    Article  Google Scholar 

  77. L. Jelinski. Biologically related aspects of nanoparticles, nanostructured materials and nanodevices. In R.W. Siegel, E. Hu, and M.C. Roco (eds.), Nanostructure Science and Technology. Kluwer Academic Publishers, Dordrecht. 113–130, 1999.

    Google Scholar 

  78. P. Jendelova, V. Herynek, J. DeCroos, K. Glogarova, B. Andersson, M. Hajek, and E. Sykova. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Res. Med., 50:767–776, 2004.

    Article  Google Scholar 

  79. C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao. Nanotechnology and Biosensors. Biotech. Adv., 22:505–518, 2004.

    Article  Google Scholar 

  80. M.-C. Jones and J.-C. Leroux. Polymeric micelles-a new generation of colloidal drug carriers. Eur. J. Pharma. Biopharma., 48:101–111, 1999.

    Article  Google Scholar 

  81. B.K. Kay et al. Phage Display of Peptides and Proteins. Academic Press, San Diego, 1996.

    Google Scholar 

  82. D. Kehagias, A. Gouliamos, V. Smyrniotis, and L. Vlahos. Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J. MRI., 14, 2001.

    Google Scholar 

  83. S.B.H. Kent. Building proteins through chemistry: total chemical synthesis of protein molecules by chemical ligation of unprotected protein segments. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 75–92, 1998.

    Google Scholar 

  84. S. Kidoaki, I.K. Kwon, and T. Matsuda. Mesoscopic spatial designs of nano-and microfiber meshes fortissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials., 26:37–46, 2005.

    Article  Google Scholar 

  85. M.F. Kircher, R.Weissleder, and L. Josephson. A Dual Flourochrome Probe for Imaging Proteases. Bioconj. Chem., 15:242–248, 2004.

    Article  Google Scholar 

  86. I. Kleps, A. Angelscu, R. Valisco, and D. Dascalu. New micro and nanoelectrode arrays for biomedical applications. BMMD., 3:29–33, 2001.

    Google Scholar 

  87. M. Kolonin, R. Pasqualini, and W. Arap. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol., 5:308–313, 2001.

    Article  Google Scholar 

  88. M. Kovasovics-Bankowski, K. Clark, B. Benacerraf, and K.L. Rock. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. U.S.A., 90:4942–4946, 1993.

    Article  Google Scholar 

  89. J. Kreuter, D. Shamenkov, V. Petrov, P. Ramge, K. Cychutek, C. Koch-Brandt, and R. Alyautdin. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 10:317–325, 2002.

    Article  Google Scholar 

  90. R.P. Lanza, S.J. Sullivan, and W.L. Chick. Perspectives in diabetes. Islet transplantation with immunoisolation. Diabetes., 41:1503–1510, 1992.

    Article  Google Scholar 

  91. K.-B. Lee, S.-J. Park, C.A. Mirkin, J.C. Smith, and M. Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science, 295:1702–1705, 2002a.

    Article  Google Scholar 

  92. J.H. Lee, K.H. Yoon, K.S. Hwang, J. Park, S. Ahn, and T.S. Kim. Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens. Bioelect., 20:269–275, 2004.

    Article  Google Scholar 

  93. L.J. Lee. BioMEMS and micro-/nano-processing of polymers-an overview. Chinese Journ. Chem. Eng., in press.

    Google Scholar 

  94. S.C. Lee, K. Bhalerao, and M. Ferrari. Object-Oriented Design Tools for Supramolecular Devices and Biomedical Nanotechnology. Ann. N.Y. Acad. Sci., 1013:1–14, 2004.

    Article  Google Scholar 

  95. S.C. Lee. Biotechnology for nanotechnology. Trends Biotechnol., 16:239–240, 1998a.

    Article  Google Scholar 

  96. S.C. Lee. Engineering the protein components of nanobiological devices. In S.C. Lee and L. Savage, (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 67–74, 1998b.

    Google Scholar 

  97. S.C. Lee. How a molecular biologist can wind up organizing nanotechnology meetings. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. p. iv, 1998c.

    Google Scholar 

  98. S.C. Lee. The nanobiological strategy for construction of nanodevices. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 3–14, 1998d.

    Google Scholar 

  99. S.C. Lee. A biological nanodevice for drug delivery. In National Science and Technology Council. IWGN Workshop Report: Nanotechnology Research Directions. International Technology Research Institute, World Technology Division. Kluwer Academic Publishers, Baltimore. pp. 91–92, 2000.

    Google Scholar 

  100. S.C. Lee. Antibody responses to nanomaterials. In Nanospace 2001: Exploring Interdisciplinary Frontiers. Institute for Advanced Interdisciplinary Research, Houston, TX, 2001a.

    Google Scholar 

  101. S.C. Lee. Dendrimers in nanobiological devices. In D. Tomalia and J. Frechet (eds.), Dendrimers and Other Dendritic Polymers. John Wiley & Co., London. pp. 548–557, 2001b.

    Google Scholar 

  102. S.C. Lee, R. Ibdah, C.D. van Valkenburgh, E. Rowold, A. Donelly, A. Abegg, J. Klover, S. Merlin, and J. McKearn. Phage display mutagenesis of the chimeric dual cytokine receptor agonist myelopoietin. Leukemia, 15:1277–1285, 2001a.

    Article  Google Scholar 

  103. S.C. Lee, M.S. Leusch, V.A. Luckow, and P. Olins. Method of producing recombinant viruses in bacteria. In US Patent and Trademark Office 5,348,886, USA, 1994.

    Google Scholar 

  104. S.C. Lee, R. Parthasarathy, and K. Botwin. Protein-polymer conjugates: synthesis of simple nanobiotechnological devices. Polymer Preprints, 40:449–450, 1999.

    Google Scholar 

  105. S.C. Lee, R. Parthasarathy, K. Botwin, D. Kunneman, E. Rowold, G. Lange, J. Zobel, T. Beck, T. Miller, and C.F. Voliva. Antibodies reponses to dendrimers: strategies and implications. PMSE, 84:824–825, 2001b.

    Google Scholar 

  106. S.C. Lee, R. Parthasarathy, K. Botwin, D. Kunneman, E. Rowold, G. Lange, J. Zobel, T. Beck, T. Miller, and C.F. Voliva. Humeral immune responses to polymeric nanomaterials. In C. Carraher and G. Swift (eds.), Functional Condensation Polymers. Kluwer Publishers, New York. pp. 31–41, 2002b.

    Chapter  Google Scholar 

  107. S.C. Lee, R. Parthasarathy, T. Duffin, K. Botwin, T. Beck, G. Lange, J. Zobel, D. Jansson, D. Kunneman, E. Rowold, and C.F. Voliva. Antibodies to PAMAMdendrimers: reagents for immune detection, assembly and patterning of dendrimers. In D. Tomalia and J. Frechet (eds.), Dendrimers and Other Dendritic Polymers. John Wiley & Co., London. 559–566, 2001c.

    Chapter  Google Scholar 

  108. S.C. Lee, R. Parthasarathy, T. Duffin, K. Botwin, T. Beck, G. Lange, J. Zobel, D. Kunneman, E. Rowold, and C.F. Voliva. Recognition properties of antibodies to PAMAM dendrimers and their use in immune detection of dendrimers. BMMD, 3:51–57, 2001d.

    Google Scholar 

  109. G. Lemieux and C. Bertozzi. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol., 16:506–512, 1998.

    Article  Google Scholar 

  110. A. Lenarczyk, T.T.T. Le, D. Drane, J. Malliaros, M. Pearse, R. Hamilton, J. Cox, T. Luft, J. Gardner, and A. Suhrbier. ISCOM ® based vaccines for cancer immunotherapy. Vaccine, 22:963–974, 2004.

    Article  Google Scholar 

  111. L. Leoni and T. Desai. Micromachined biocapsules for cell-based sensing and delivery. Adv. Drug Deliv. Rev., 56:211–229, 2004.

    Article  Google Scholar 

  112. M.S. Leusch, S.C. Lee, and P.O. Olins. A novel host-vector system for direct selection of recombinant baculoviruses (bacmids) in Escherichia coli. Gene., 160:191–194, 1995.

    Article  Google Scholar 

  113. J.A. Lewis and G.M. Gratson. Direct writing in three dimensions. Materials Today, 7:32–39, 2004.

    Article  Google Scholar 

  114. K.C.P. Li, S.D. Pandit, S. Guccione, and M.D. Bednarski. Molecular Imaging Applications in Nanomedicine. BMMD, 6:113–116, 2004.

    Google Scholar 

  115. Z. Li, Y. Zhang, P. Fullhart, and C.A. Mirkin. Reversible and Chemically Programmable Micelle Assembly with DNA Block-Copolymer Amphophiles. Nano Lett., 4:1055–1058, 2004.

    Article  Google Scholar 

  116. Y.X. Liang and T.H. Wang. A double-walled carbon nanotube field-effect transistor using the inner shell as its gate. Physica E, 23:232–236, 2004.

    Article  Google Scholar 

  117. G. Lin, R. Palmer, K. Pister, and K. Roos. Miniature heart cell force transducer system implemented in MEMS technology. IEEE Trans. Biomed. Engin., 48:996–1006, 2001.

    Article  Google Scholar 

  118. C. Liu and Z. Zhang. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater., 13:2092–2096, 2001.

    Google Scholar 

  119. P. Lockman, R. Mumper, M. Khan, and D. Allen. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Devel. Indust. Pharm., 28:1–13, 2002.

    Article  Google Scholar 

  120. V.A. Luckow, S.C. Lee, G.F. Barry, and P.O. Olins. Efficient generation of infectious recombinant baculoviruses by site-specific, transposon-mediated insertion of foreign DNA into a baculovirus genome propagated in E. coli. J. Virol., 67:4566–4579, 1993.

    Google Scholar 

  121. Z. Ma and S. Taylor. Nucleic acid triggered catalytic drug release. Proc. Natl. Acad. Sci. U.S.A., 97:11159–11163, 2000.

    Article  Google Scholar 

  122. H. Maeda, T. Sawa, and T. Konno. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Cont. Rel., 74:47–61, 2001.

    Article  Google Scholar 

  123. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris. Single and multiwall carbon nanotube field-effect transistors. Appl. Phys. Lett., 73:2447–2449, 1998.

    Article  Google Scholar 

  124. K. Maruyama, O. Ishida, S. Kasaoka, T. Takizawa, N. Utoguchi, A. Shinohara, M. Chiba, H. Kobayashi, M. Eriguchi, and H. Yanagie. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J. Cont. Rel., 98:195–207, 2004.

    Article  Google Scholar 

  125. P. Meers. Enzyme-activated targeting of liposomes. Adv. Drug Deliv. Rev., 53:265–272, 2001.

    Article  Google Scholar 

  126. M. Mendoca-Dias, E. Gaggelli, and P. Lauterbur. Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Sem. Nuclear Med., 13:364–376, 1983.

    Article  Google Scholar 

  127. R.C. Merkle. Biotechnology as a route to nanotechnology. Trends Biotechnol., 17:271–274, 1999.

    Article  Google Scholar 

  128. G. Morón, G. Dadaglio, and C. Leclerc. New tools for antigen delivery to the MHC class I pathway. Trends Immunol., 25:92–97, 2004.

    Article  Google Scholar 

  129. R. Mrsny, A.L. Daughtery, M. Mckee, and D. Fitzgerald. Bacterial toxins as tools for mucosal vaccination. Drug Disc. Today, 7:247–257, 2002.

    Article  Google Scholar 

  130. L.L. Muldoon, M.A. Pagel, R.A. Kroll, S. Roman-Goldstein, R.S. Jones, and E.A. Neuwelt. Aphysiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. AJNR Am. Journ. Neuroradial., 20:217–222, 1999.

    Google Scholar 

  131. J. Nagy. Competition and natural selection in a mathematical model of cancer. Bull. Mathem. Biol., 66:663–687, 2004.

    Article  MathSciNet  Google Scholar 

  132. N.S. Nahman, T. Drost, U. Bhatt, T. Sferra, A. Johnson, P. Gamboa, G. Hinkle, A. Haynam, V. Bergdall, C. Hickey, J.D. Bonagura, L. Brannon-Pappas, J. Ellison, A. Mansfield, S. Shiwe, and N. Shen. Biodegradable microparticles for in vivo glomerular targeting: implications for gene therapy of glomerular disease. BMMD, 4:189–196, 2002.

    Google Scholar 

  133. M. Nielson, C. Lundegaard, P.Worning, C.S. Hvid, K. Lamberth, S. Buus, S. Brunak, and O. Lund. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics, 20:1388–1397, 2004.

    Article  Google Scholar 

  134. H. Nobuto, T. Sugita, T. Kubo, S. Shimose, Y. Yasunaga, T. Murakami, and M. Ochi. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Inter. J. Cancer, 109:627–635, 2004.

    Article  Google Scholar 

  135. C. Nolte-Ernsting, G. Adam, A. Bucker, S. Berges, A. Bjornerud, and R. Gunther. Abdominal MR angiography performed using blood pool contrast agents. AJR, 171:107–113, 1998.

    Google Scholar 

  136. T. Nozaki, R. Ogawa, L.B. Feril, G. Kagiya, H. Fuse, and K. Kondo. Enhancement of ultrasound-mediated gene transfection by membrane modification. J. Gene Med., 5:1046–1955, 2003.

    Article  Google Scholar 

  137. R. Offord and K. Rose. Multicomponent synthetic constructs. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 93–105, 1998.

    Google Scholar 

  138. T. Olafsen, C.-W. Cheung, P.J. Yazaki, L. Li, G. Sundaresan, S.S. Gambhir, M.A. Sherman, L.E. Williams, J.E. Shively, A.A. Raubitschek, and A.M. Wu. Covalent disulfide-linked anti-CEA diabody allows sitespecific conjugation and radiolabeling for tumor targeting applications. Prot. Eng. Des. Selec., 17:21–27, 2004.

    Article  Google Scholar 

  139. M. Ollsen, B. Persson, and L. Salford. Ferromagnetic particles as contrast agent in T2NMRimaging. Magn. Reson. Imag., 4:437–440, 1986.

    Article  Google Scholar 

  140. C. Oseroff, A. Sette, P. Wentworth, E. Celis, A. Maewal, C. Dahlberg, J. Fikes, R.T. Kubo, R.W. Chestnut, H.M. Grey, and J. Alexander. Pools of lapidated HTL-CTL constructs prime for multiple HBV and HCV CTL epitope responses. Vaccine, 16:823–833, 1998.

    Article  Google Scholar 

  141. O.C. Ozlem and V. Hasirci. UV-induced drug release from photoactive REV sensitized by suprofen. J. Contr. Rel., 96:85–96, 2004.

    Article  Google Scholar 

  142. R. Roy and J.M. Kim. Cu(II)-Self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tnantigen cancer marker: syntheses and lectin binding properties. Tetrahedron, 59:3881–3893, 2003.

    Article  Google Scholar 

  143. H. Paajanen and M. Kormano. Contrast agents in magnetic resonance imaging. In J. Skucas (ed.), Radiographic Contrast Agents. Aspen Publishers, Rockville, MD. pp. 377–406, 1989.

    Google Scholar 

  144. A. Pal, S.K. Ghosh, K. Esumi, and T. Pal. Reversible Generation of Gold Nanoparticle Aggregates with Changeable Interparticle Interactions by UV Photoactivation. Langmuir, 20:575–578, 2004.

    Article  Google Scholar 

  145. S.-J. Park, A.A. Lazarides, J.J. Storhoff, L. Pesce, and C.A. Mirkin. Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization. J. Phys. Chem. B (in press), 2004.

    Google Scholar 

  146. J. Parkinson and R. Gordon. Beyond micromachining: the potential of diatoms. Trends Biotechnol., 17:190–196, 1999.

    Article  Google Scholar 

  147. A.K. Patri, I.J. Majoros, and Jr, J.R. Baker. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 6:466–471, 2002.

    Article  Google Scholar 

  148. K. Pearce, B. Cunningham, G. Fuh, T. Teeri, and J.A. Wells. Growth hormone affinity for its receptor surpasses the requirements for cellular activity. Biochemistry, 38:81–89, 1999.

    Article  Google Scholar 

  149. P.P. Pompa, A. Biasco, R. Cingolani, R. Rinaldi, M. Ph. Verbeet, G.W. Canters. Structural stability of protein monolayers in air. Phys. Rev. E, 69:032901–032904, 2004.

    Article  Google Scholar 

  150. D. Portet, B. Denizot, E. Rump, J.-J. Lejeune, and P. Jallet. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Coll. Inter. Sci., 238:37–42, 2001.

    Article  Google Scholar 

  151. H. Quick, J. Debatin, and M. Ladd. MR imaging of the vessel wall. Eur. Radiol., 12:889–900, 2002.

    Article  Google Scholar 

  152. A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A.K. Patri, T. Thomas, J. Mule, and Jr., J.R. Baker. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharma. Res., 19:1310–1316, 2002.

    Article  Google Scholar 

  153. R. Raiteri, M. Grattarola, H.-J. Butt, and P. Skladl. Micromechanical cantilever-based biosensors. Sensors. Actuat. B, 79:115–126, 2001.

    Article  Google Scholar 

  154. K. Rajagopal and J.P. Schneider. Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struc. Biol., 14:480–486, 2004.

    Article  Google Scholar 

  155. D. Ranney. Biomimetic transport and rational drug delivery. Biochem. Pharm., 59:105–114, 2000.

    Article  Google Scholar 

  156. V. Raso, M. Brown, and J. McGrath. Intracellular triggering with low pH-triggered bispecfic antibodies. J. Biol. Chem., 272:27623–27628, 1997.

    Article  Google Scholar 

  157. S. Raychanduri and K.L. Rock. Fully mobilizing host defense: building better vaccines. Nature Biotech., 16:1025–1031, 1998.

    Article  Google Scholar 

  158. F. Rety, O. Clement, N. Siauve, C.-A. Cuenod, F. Carnot, M. Sich, A. Buisine, and G. Frija. MR lymphography using iron oxide nanoparticles in rats: pharmacokinetics in the lymphatic system after intravenous injection. J. MRI, 12:734–739, 2000.

    Google Scholar 

  159. R. Rinaldi and R. Cingolani. Electronic nanodevices based on self-assembled metalloproteins. Physica. E, 21:45–60, 2004.

    Article  Google Scholar 

  160. J.A. Ritter, A.D. Ebner, K.D. Daniel, and K.L. Stewart. Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magnetism Magn. Mater., 280:184–201, 2004.

    Article  Google Scholar 

  161. J.C. Roberts, M.K. Bhalgat, and R.T. Zera. Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J. Biomed. Mater. Res., 30:53–65, 1996.

    Article  Google Scholar 

  162. K. Rock, S. Gamble, and L. Rothstein. Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science, 249:918–921, 1990.

    Article  Google Scholar 

  163. K. Rogers. Principles of affinity-based biosensors. Mol. Biotechnol., 14:109–129, 2000.

    Article  Google Scholar 

  164. H.W. Rohrs and R.S. Ruoff. The use of carbon nanotubes in hybrid nanometer-scale devices. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 33–38, 1998.

    Google Scholar 

  165. M. Ruegsegger and R. Marchant. Reduced protein adsorption and platelet adhesion by controlled variation of oligomaltose surfactant polymer coatings. J. Biomed. Mater. Res., 56:159–167, 2001.

    Article  Google Scholar 

  166. E. Ruoslahti. Drug targeting to specific vascular sites. Drug Disc. Today, 7:1138–1143, 2002.

    Article  Google Scholar 

  167. E. Ruoslahti. Special delivery of drugs by targeting to tissue-specific receptors in vasculature. Pharmaceutical News,7:35–40, 2000.

    Google Scholar 

  168. A. Saghatelian, Y. Yokobayashi, K. Soltani, and M.R. Ghadiri. A chiroselective peptide replicator. Nature, 409:777–778, 2001.

    Article  Google Scholar 

  169. D. Satake, H. Ebi, N. Oku, K. Matsuda, H. Takao, M. Ashiki, and M. Ishida. A sensor for blood cell counters using MEMS technology. Sensors Actuat. B—Chem., 83:77–81, 2002.

    Article  Google Scholar 

  170. S. Schmitz, M. Taupitz, S.Wagner, K.-J.Wolf, D. Beyersdorff, and D. Hamm. Magnetic resonance imaging of atherosclerotic plaques using supermagnetic iron oxide particles. J. MRI, 14:355–361, 2001.

    Google Scholar 

  171. J. Schnorr, M. Taupitz, S. Wagner, H. Pilgrimm, J. Hansel, and B. Hamm. Age-related blood half-life of particulate contrast materials: experimental results with a USPIO in rats. J. MRI, 12:740–744, 2000.

    Google Scholar 

  172. N.C. Seeman, J. Chen, Z. Zhang, B. Lu, H. Qiu, T.-J. Fu, Y. Wang, X. Li, J. Qi, F. Liu, L.A. Wenzler, S. Du, J.E. Mueller, H. Wang, C. Mao, W. Sun, Z. Shen, M.H. Wong, and R. Sha. A bottom-up approach to nanotechnology using DNA. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 45–58, 1998.

    Google Scholar 

  173. A.H. Sehon. Suppression of antibody responses by conjugates of antigens and monomethoxypoly(ethylene glycol). In J.M. Harris (ed.), Poly(ethylene glycol) Chmeistry. Plenum, New York. pp. 139–151, 1992.

    Google Scholar 

  174. P.D. Senter and C.J. Springer. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv. Drug Deliv. Rev., 53:247–264, 2001.

    Article  Google Scholar 

  175. G. Shi, M. Rouabhia, Z.Wang, L.H. Dao, and Z. Zhang. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25:2477–2488, 2004.

    Article  Google Scholar 

  176. D. Shu, L. Huang, and P. Guo. A simple mathematical formula for stoichiometry quantification of viral and nanobiological assemblage using slopes of log/log plot curves. J. Virol. Meth., 115:19–30, 2004.

    Article  Google Scholar 

  177. P. Shum, J.-M. Kim, and D.H. Thompson. Phototriggering of liposomal delivery systems. Adv. Drug Deliv. Rev., 53:273–284, 2001.

    Article  Google Scholar 

  178. Skotland, T.P. Sontum, and I. Oulie. In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscanℳ), a contrast agent for magnetic resonance imaging. J. Pharm. Biomed. Anal., 28:323–329, 2002.

    Article  Google Scholar 

  179. J. Song, Q. Cheng, S. Zhu, and R.C. Stevens. “smart” materials for biosensing devices:cell-mimicking supramolecular assemblies and colorometric detection of pathogenic agents. BMMD.4:213–222, 2002.

    Google Scholar 

  180. K. Soppimath, T. Aminabhavi, A. Kulkarni, and W. Rudzinski. Biodegradable polymeric nanoparticles as drug delivery devices. J. Cont. Release, 70:1–20, 2001.

    Article  Google Scholar 

  181. R. Spindler. PAMAM starburst dendrimers: designed nanoscopic reagents for biological applications. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 15–32, 1998.

    Google Scholar 

  182. R.M. Stoltenberg and A.T. Woolley. DNA-Templated Nanowire Fabrication. BMMD, 6:105–111, 2004.

    Google Scholar 

  183. L. Thunus and R. Lejeune. Overview of transition metal and lanthanide complexes as diagnostic tools. Coord. Chem. Rev., 184:125–155, 1999.

    Article  Google Scholar 

  184. K.B. Thurmond II, H. Huang, and K.L. Wooley. Stabilized micellar structures in nanodevices. In S.C. Lee and L. Savage, (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 39–43, 1998.

    Google Scholar 

  185. L. Tiefenauer, G. Kuhne, and R. Andres. Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjugate Chem., 4:347–352, 1993.

    Article  Google Scholar 

  186. D. Tomalia and H.M. BrothersII. Regiospecific conjugation to dendritic polymers to produce nanodevices. In S.C. Lee and L. Savage (eds.), Biological Molecules in Nanotechnology: the Convergence of Biotechnology, Polymer Chemistry and Materials Science. IBC Press, Southborough, MA. pp. 107–120, 1998.

    Google Scholar 

  187. R.A. Tromp, S.S.G.E. van Boom, T.C. Marco, S. van Zutphen, G.A. van derMarel, H.S. Overkleeft, J.H. van Boom, and J. Reedijk. The \-glucuronyl-based prodrug strategy allows for its application on \-glucuronyl-platinum conjugates. Bioorg. Med. Chem. Lett., 14:4273–4276, 2004.

    Article  Google Scholar 

  188. I. Uchegbu. Parenteral drug delivery: 1. Pharma. Journal. 263:309–318, 1999a.

    Google Scholar 

  189. I. Uchegbu. Parenteral drug delivery: 2. Pharma. Journal. 263:355–359, 1999b.

    Google Scholar 

  190. S. Uppuluri, D.R. Swanson, L.T. Peihler, J. Li, G. Hagnauer, and D.A. Tomalia. Core shell tecto(dendrimers). I. Synthesis and characterization of saturated shell models. Adv. Mater., 12:796–800, 2000.

    Article  Google Scholar 

  191. P. Vaupel, D.K. Kelleher, and O. Thews. Modulation of tumor oxygenation. Int. J. Rad. Oncol. Biol. Phys., 42:843–848, 1998.

    Article  Google Scholar 

  192. S. Vichier-Guerre, R. Lo-Man, V. Huteau, E. Deriaud, C. Leclerc, and S. Bay. Synthesis and immunological evaluation of an antitumor neoglycopeptide bearing a novel homoserine Tn antigen. Bioorg. Med. Chem. Lett., 14:3567–3570, 2004.

    Article  Google Scholar 

  193. B.L. Viglianti, S.A. Abraham, C.R. Michelich, P.S. Yarmolenko, J.R. MacFall, M.B. Bally, and M.W. Dewhirst. In Vivo Monitoring of Tissue Pharmacokinetics of Liposome/Drug Using MRI: Illustration of Targeted Delivery. Magn. Reson. Med., 51:1153–1162, 2004.

    Article  Google Scholar 

  194. H. Wang, H. Song, and V.C. Yang. A recombinant prodrug type approach for triggered delivery of streptokinase. J. Cont. Rel., 59:119–122, 1999.

    Article  Google Scholar 

  195. R. Weissleder, G. Elizondo, J. Wittenberg, C. Rabito, H. Bengele, and L. Josephson. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology, 175:489–493, 1990.

    Google Scholar 

  196. S. Wickline. Plaque characterization: surrogate markers or the real thing? J. Amer. Coll. Cardio., 43:1185–1187, 2004.

    Article  Google Scholar 

  197. G. Wunderlich, T. Gruning, B.-R. Paulke, A. Lieske, and J. Kotzerke. 99mTc labelled model drug carriers—labeling, stability and organ distribution in rats. Nucl. Med. Biol., 31:87–92, 2004.

    Article  Google Scholar 

  198. B.I. Yacobson and R.E. Smalley Fullerene nanotubes: C1,000,000 and beyond. Amer. Scient., 85:324–337, 1997.

    Google Scholar 

  199. Y. Zhang, C. Sun, N. Kohler, and M. Zhang. Self-Assembled Coatings on Individual Monodisperse Magnetite Nanoparticles for Efficient Intracellular Uptake. BMMD, 6:33–40, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ronain Smith, B., Ruegsegger, M., Barnes, P.A., Ferrari, M., Lee, S.C. (2006). Nanodevices in Biomedical Applications. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics