Skip to main content

Dip-Pen Technologies for Biomolecular Devices

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Since the 1950s, Scanning Electron Microscopy (SEM) has been commercially available and used to measure feature sizes below1 micron. Modified SEMs have been employed since the 1960s to perform sub-micron lithography, which then made rapid advances in the 1990s to a process, known as electron beam lithography (EBL). Since the 1980s, Surface Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) have ushered the era of nanotechnology where it is possible to measure and control the manipulation of matter on the 100nm scale and below. These techniques are broadly classified as “Scanning Probe Microscopy (SPM)”. The earliest forms of nanofabrication using STM based approaches were used to pattern “hard” materials (such as silicon-dioxide; as opposed to “soft” materials such as polymers or biological materials) and restricted to single layer processing. These methods were initially motivated by applications in the semi-conductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Agarwal, L.A. Sowards, R.R. Naik, and M.O. Stone. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc., 125:580–583, 2003a.

    Article  Google Scholar 

  2. G. Agarwal, R.R. Naik, and M.O. Stone. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc., 125:7408–7412, 2003b.

    Article  Google Scholar 

  3. N.A. Amro, S. Xu, and G.Y. Liu. Patterning surfaces using tip-directed displacement and self-assembly. Langmuir, 16:3006–3009, 2000.

    Article  Google Scholar 

  4. G. Agarwal, L.A. Sowards, R.R. Naik, and M.O. Stone. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc., 125:580–583, 2003.

    Article  Google Scholar 

  5. D. Banerjee, N. Amro, and J. Fragala. Optimizing Microfluidic Ink Delivery Apparatus for Dip Pen Nanolithography. Proceedings of the SPIE Vol. 5345, PhotonicWest 2004 Symposium on Microfluidics, BioMEMS and Medical Microsystems II, Paper No. 5345-28, Jan 24–29, San Jose, CA, 2004.

    Google Scholar 

  6. P. Belaubre, M. Guirardel, G. Garcia, J.B. Pourciel, V. Leberre, A. Dagkessamanskaia, E. Trévisiol, J.M. FranÇois, and C. Berguad. Fabrication of biological microarrays using microcantilevers. Appl. Phys. Lett., 82(18):3122–3124, 2003.

    Article  Google Scholar 

  7. A. Bruckbauer, D.J. Zhou, and L.M. Ying et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc., 125(32):9834–9839, 2003.

    Article  Google Scholar 

  8. C.L. Cheung, J.A. Camarero, B. Woods, T. Lin, J.E. Johnson, and J.J. DeYoreo. Fabrication of assembled virus nanostructures on templates of chemoselective linkers by scanning probe nanolithography. J. Am. Chem. Soc., 125:6848–6849, 2003.

    Article  Google Scholar 

  9. L.M. Demers and G. della Cioppa. Nanotechnology to advance discovery r&d—tutorial: Dip pen nanolithography as a next-generation, massively parallel nanoarray platform. Genet. Eng. News, 23(15), 2003.

    Google Scholar 

  10. L.M. Demers, D.S. Ginger, S.J. Park, Z. Li, S.W. Chung, and C.A. Mirkin. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 296:1836–1838, 2002.

    Article  Google Scholar 

  11. L.M. Demers, S.J. Park, T.A. Taton, Z. Li, and C.A. Mirkin. Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA. Angew. Chem. Int. Ed., 40(16):3071–3073, 2001.

    Article  Google Scholar 

  12. L.M. Demers and C.A. Mirkin. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew. Chem. Int. Ed., 40(16):3069–3071, 2001.

    Article  Google Scholar 

  13. D.S. Ginger, H. Zhang, and C.A. Mirkin. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed., 43(1):30–45, 2004.

    Article  Google Scholar 

  14. P.T. Hurley, A.E. Ribbe, and J.M. Buriak. Nanopatterning of alkynes on hydrogen-terminated silicon surfaces by scanning probe-induced cathodic electrografting. J. Am. Chem. Soc., 125(37):11334–11339, 2003.

    Article  Google Scholar 

  15. J. Hyun, S.J. Ahn, W.K. Lee, A. Chilkoti, and S. Zauscher. Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Letters, 2(11):1203–1207, 2002. [16] A. Ivanisevic, J.M. Im, K.B. Lee, S.J. Park, L.M. Demers, K.J. Watson, and C.A. Mirkin. Redox-controlled orthogonal assembly of charged nanostructures. J. Am. Chem. Soc., 123:12424–12425, 2001.

    Article  Google Scholar 

  16. J.Y. Jang, G.C. Schatz, and M.A. Ratner. Liquid meniscus condensation in dip-pen nanolithography. J. Chem. Phys., 116(9):3875–3886, 2002.

    Article  Google Scholar 

  17. H. Jung, R. Kulkarni, and C.P. Collier. Dip-pen nanolithography of reactive alkoxysilanes on glass. J. Am. Chem. Soc., 125(40):12096–12097, 2003.

    Article  Google Scholar 

  18. K.-H. Kim, N.M. Ke, and H.D. Espinosa. “Massively Parallel Multi-tip Nanoscle Writer with Fluidic Capabilities—Fountain Pen Nanolithography (FPN)”, Proceedings of the 4th International Symposium on MEMSand Nanotechnology, the 2003SEMAnnual Conference and Exposition on Experimental and Applied Mechanics, June 2–4, Charlotte, North Carolina, Session 52, Paper 191, pp. 235–238, 2003.

    Google Scholar 

  19. K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, and M. Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science, 295:1702–1705, 2002.

    Article  Google Scholar 

  20. K.B. Lee, J.H. Lim, and C.A. Mirkin. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc., 125(19):5588–5589, 2003.

    Article  Google Scholar 

  21. A. Lewis, Y. Kheifetz, E. Shambrodt, A. Radko, E. Khatchatryan, and C. Sukenik. Fountain Pen nanochemistry: Atomic force control of chrome etching. App. Phys. Lett., 75(17):2689–2691, 1999.

    Article  Google Scholar 

  22. Y. Li, B.W. Maynor, and J. Liu. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc., 123:2105–2106, 2001.

    Article  Google Scholar 

  23. J.H. Lim, D.S. Ginger, K.B. Lee, J.M. Nam, and C.A. Mirkin. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Ed., 42:2309–2312, 2003.

    Article  Google Scholar 

  24. X. Liu, L. Fu, S. Hong, V.P. Dravid, and C.A. Mirkin. Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. Ad. Mat., 14(3):231–234, 2002.

    Article  Google Scholar 

  25. J.H. Lim and C.A. Mirkin. Electrostatically driven dip-pen nanolithography of conducting polymers. Ad. Mat., 14(20):1474–1477, 2002.

    Article  Google Scholar 

  26. P. Manandhar, J. Jang, G.C. Schatz, M.A. Ratner, and S. Hong. Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett., 90(11):115505-1–115505-4, 2003.

    Article  Google Scholar 

  27. S. Matsubara, H. Yamamoto, K. Oshima, E. Mouri, and H. Matsuoka. Fabrication of nano-structure by Diels-Alder reaction. Chem. Lett., 9:886–887, 2002.

    Article  Google Scholar 

  28. R. McKendry, W.T.S. Huck, B. Weeks, M. Florini, C. Abell, and T. Rayment. Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography. Nano Lett., 2(7):713–716, 2002.

    Article  Google Scholar 

  29. C.A. Mirkin. Programming the assembly of two-and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem., 39(11):2258–2272, 2000.

    Article  Google Scholar 

  30. A. Noy, A.E. Miller, J.E. Klare, B.L. Weeks, B.W. Woods, and J.J. DeYoreo. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett., 2(2):109–112, 2002.

    Article  Google Scholar 

  31. R.D. Piner and C.A. Mirkin. Effect ofWater on Lateral Force Microscopy in Air. Langmuir, 13:6864–6868, 1997.

    Article  Google Scholar 

  32. R.D. Piner, J. Zhu, F. Xu, S. Hong, and C.A. Mirkin. “Dip-pen” nanolithography. Science, 283:661–663, 1999.

    Article  Google Scholar 

  33. L.A. Porter, A.E. Ribbe, and J.M. Buriak. Metallic nanostructures via static plowing lithography. Nano Lett., 3(8):1043–1047, 2003.

    Article  Google Scholar 

  34. L.A. Porter, H.C. Choi, J.M. Schmeltzer, A.E. Ribbe, L.C.C. Elliott, J.M. Buriak. Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies. Nano Lett., 2(12):1369–1372, 2002.

    Article  Google Scholar 

  35. B. Rosner, T. Duenas, D. Banerjee, R. Shile, N. Amro, and J. Rendlen. Active Probes and Microfluidic Ink Delivery for Dip Pen Nanolithography, Proceedings of SPIE Symposium on Microelectronics, MEMS and Nanotechnology, Paper # Perth, Australia, 5275-33,10–12 December, 2003.

    Google Scholar 

  36. S. Shalom, K. Lieberman, and A. Lewis. A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Inst., 63(9):4061–4065, 1992.

    Article  Google Scholar 

  37. M. Schenk, M. Futing, and R. Reichelt. Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy. J. App. Phy., 84(9):4880–4884, 1998.

    Article  Google Scholar 

  38. P.V. Schwartz. Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography. Langmuir, 18:4041–4046, 2002.

    Article  Google Scholar 

  39. J.C. Smith, K.B. Lee, Q.Wang, M.G. Finn, J.E. Johnson, M. Mrksich, and C.A. Mirkin. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett., 3(7):883–886, 2003.

    Article  Google Scholar 

  40. X.F. Wang, K.S. Ryu, D.A. Bullen, J. Zou, H. Zhang, C.A. Mirkin, and C. Liu. Scanning probe contact printing. Langmuir, 19(21):8951–8955, 2003.

    Article  Google Scholar 

  41. B.L. Weeks, A. Noy, A.E. Miller, and J.J. De Yoreo. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett., 88(25):255505-1–255505-4, 2002.

    Article  Google Scholar 

  42. D.A. Weinberger, S. Hong, C.A. Mirkin, B.W. Wessels, and T.B. Higgins. Combinatorial generation and analysis of nanometer-and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching. Adv. Mat., 12(21):1600–1603, 2000.

    Article  Google Scholar 

  43. D.L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C.A. Mirkin, and D.L. Kaplan. Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc. Nat. Acad. Sci. U.S.A., 98(24):13660–13664, 2001.

    Article  Google Scholar 

  44. M. Zhang, D. Bullen, S.W. Chung, S. Hong, K.S. Ryu, Z.F. Fan, C.A. Mirkin, and C. Liu. A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays. Nanotechnology, 13:212–217, 2002.

    Article  Google Scholar 

  45. H. Zhang, Z. Li, and C.A. Mirkin. Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Adv. Mat., 14(20):1472–1474, 2002.

    Article  Google Scholar 

  46. H. Zhang, K.B. Lee, Z. Li, and C.A. Mirkin. Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology, 14(10):1113–1117, 2003.

    Article  Google Scholar 

  47. D. Zhou, A. Bruckbauer, and L.M. Ying. Building three-dimensional surface biological assemblies on the nanometer scale. Nano Lett., 3(11):1517–1520, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Banerjee, D. (2006). Dip-Pen Technologies for Biomolecular Devices. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics