Skip to main content

Rayleigh-Bénard Convection: Thirty Years of Experimental, Theoretical, and Modeling Work

  • Chapter
Dynamics of Spatio-Temporal Cellular Structures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 207))

Abstract

A brief review of Rayleigh-Bénard studies performed during the twentieth century is presented, with an emphasis on the transition to turbulence and the appropriate theoretical framework, relying on the strength of confinement effects and the distance to threshold, either dynamical systems for temporal chaos in the strongly confined case, or models of space-time chaos when confinement effects are weak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bénard, «Les tourbillons cellulaires dans une nappe liquide,» Rev. Gén. Sci. pures et appl. 11 (1900) 1261–1271, 1309–1328.

    Google Scholar 

  2. Lord Rayleigh, “On the convective currents in a horizontal layer of fluid when the higher temperature is on the under side,” Phil. Mag. 32 (1916) 529–546.

    Google Scholar 

  3. J.R.A. Pearson, “On convection cells induced by surface tension,” J. Fluid Mech. 4 (1958) 489–500.

    Article  MATH  ADS  Google Scholar 

  4. P. Cerisier, C. Jamond, J. Pantaloni, J.C. Charmet, «Déformation de la surface libre en convection de Bénard-Marangoni,» J. Physique 45 (1984) 405–411.

    Article  Google Scholar 

  5. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    MATH  Google Scholar 

  6. E.L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, UK, 1993).

    MATH  Google Scholar 

  7. F.H. Busse, “Non-linear properties of thermal convection,” Rep. Prog. Phys. 41 (1978) 1929–1967, and “Transition to turbulence in thermal convection,” in Convective Transport and Instability Phenomena, J. Zierep, H. Oertel, Jr., eds. (Braun, Karlsruhe, 1982).

    Article  ADS  Google Scholar 

  8. A.C. Newell, Th. Passot, J. Lega, “Order parameter equations for patterns,” Ann. Rev. Fluid Mech. 25 (1993) 399–453.

    Article  MathSciNet  ADS  Google Scholar 

  9. M.C. Cross, P.C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65 (1993) 851–1112.

    Article  ADS  Google Scholar 

  10. E. Bodenschatz, W. Pesch, G. Ahlers, “Recent developments in Rayleigh-Bénard convection,” Ann. Rev. Fluid Mech. 32 (2000) 708–778.

    Article  MathSciNet  ADS  Google Scholar 

  11. E.D. Siggia, “High Rayleigh number convection,” Ann. Rev. Fluid Mech. 26 (1994) 137–168.

    Article  MathSciNet  ADS  Google Scholar 

  12. W.V.R. Malkus, G. Veronis, “Finite amplitude cellular convection,” J. Fluid Mech. 38 (1958) 227–260.

    MathSciNet  Google Scholar 

  13. A. Schlüter, D. Lortz, F.H. Busse, “On the stability of finite-amplitude convection,” J. Fluid Mech. 23 (1965) 129–144.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. R. Krishnamurti, “Some further studies on the transition to turbulent convection,” J. Fluid Mech. 60 (1973) 285–303.

    Article  ADS  Google Scholar 

  15. D. Ruelle, F. Takens, “On the nature of turbulence,” Commun. Math. Phys. 20 (1971) 167–192. Addendum 23 (1971) 344.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. L.D. Landau, “On the problem of turbulence,” reprinted in Collected Papers of L.D. Landau, D. ter Haar, ed. (Pergamon, Oxford, 1965) pp. 387–391.

    Google Scholar 

  17. H. Haken, Synergetics (Springer, 1983).

    Google Scholar 

  18. A. Libchaber, J. Maurer, «Une expérience de Rayleigh-Bénard en gémométire réduite; multiplication, accrochage et démultiplication de fréquences,» J. Physique Colloques 41-C3 (1980) 51–56.

    Google Scholar 

  19. M. Sano, Y. Sawada, “Experimental study on Poincaré mappings in Rayleigh-Bénard convection” in Turbulence and Chaotic Phenomena in Fluids, T. Tatsumi, ed, (Elsevier, New York 1984).

    Google Scholar 

  20. M. Dubois, M.A. Rubio, P. Bergé, “Experimental evidence of intermittencies associated with a subharmonic bifurcation,” Phys. Rev. Lett. 51 (1983) 1446–1449.

    Article  MathSciNet  ADS  Google Scholar 

  21. Y. Pomeau, P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Commun. Math. Phys. 74 (1980) 189–197.

    Article  MathSciNet  ADS  Google Scholar 

  22. F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D.A. Rand, L.S. Young, eds., Lecture Notes in Mathematics 898 (Springer, New York, 1981) pp. 366–381.

    Chapter  Google Scholar 

  23. B. Malraison, P. Atten, P. Bergé, M. Dubois, «Dimension d’attracteurs étranges: une détermination expérimentale en régime chaotique de deux systèmes convectifs,» C.R. Acad. Sc. Paris 297 Série II (1983) 209–214.

    ADS  Google Scholar 

  24. P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9 (1983) 189–208.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, J. Stavans, “Global universality at the onset of chaos: Results of a forced Rayleigh-Bénard experiment,” Phys. Rev. Lett. 55 (1985) 2798–2801.

    Article  ADS  Google Scholar 

  26. E.N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20 (1963) 130–141.

    Article  ADS  Google Scholar 

  27. M. Dubois, P. Bergé, «Étude expérimentale des transitions vers le chaos en convection de Rayleigh-Bénard,» in Le Chaos, Théorie et expériences, P. Bergé, ed. (Eyrolles, 1988) pp. 1–72 (in French).

    Google Scholar 

  28. P. Bergé, “From temporal chaos towards spatial effects,” Nuclear Physics B (Proc. Suppl.) 2 (1987) 247–258.

    Article  Google Scholar 

  29. L.A. Segel, “Distant side-walls cause slow amplitude modulation of cellular convection,” J. Fluid Mech. 38 (1969) 203–224.

    Article  MATH  ADS  Google Scholar 

  30. A.C. Newell, J.A. Whitehead, “Finite bandwidth, finite amplitude convection,” J. Fluid Mech. 38 (1969) 279–303.

    Article  MATH  ADS  Google Scholar 

  31. J.E. Wesfreid, Y. Pomeau, M. Dubois, Ch. Normand, P. Bergé, “Critical effects in Rayleigh-Bénard convection,” J. Physique 39 (1978) 725–731.

    Article  Google Scholar 

  32. J. Oh & G. Ahlers, “Fluctations in a fluid with a thermal gradient,” UCSB preprint, September 2002.

    Google Scholar 

  33. M.C. Cross, “Ingredients of a theory of convective textures close to onset,” Phys. Rev. A 25 (1982) 1065–1076.

    Article  ADS  Google Scholar 

  34. M.C. Cross, A.C. Newell, “Convection patterns in large aspect ratio systems,” Physica D 10 (1984) 299–328.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. J. Swift, P.C. Hohenberg, “Hydrodynamic fluctuations at the convective instability,” Phys. Rev. A 15 (1977) 319–328.

    Article  ADS  Google Scholar 

  36. C. Perez-Garcia, J. Millán-Rodriguez, H. Herrero, “A generalized Swif-Hohenberg model for several convective problems,” in Instabilities and Nonequilibrium Structures IV, E. Tirapegui, W. Zeller, eds. (Kluwer, Hingham, MA, 1993) pp. 225–234.

    Google Scholar 

  37. E.D. Siggia, A. Zippelius, “Pattern selection in Rayleigh-Bénard convection near threshold,” Phys. Rev. Lett. 47 (1981) 835–838.

    Article  ADS  Google Scholar 

  38. W. Decker, W. Pesch, “Order parameter and amplitude equations for the Rayleigh-Bénard convection,” J. Phys. II France 4 (1994) 419–438.

    Article  Google Scholar 

  39. P. Manneville, J.M. Piquemal, “Zigzag instability and axisymmetric rolls in Rayleigh-Bénard convection, the effects of curvature,” Phys. Rev. A 28 (1983) 1774–1790.

    Article  MathSciNet  ADS  Google Scholar 

  40. Y. Pomeau, P. Manneville, “Stability and fluctuations of a spatially periodic convective flow,” J. Physique Lettres 40 (1979) L–610.

    MathSciNet  Google Scholar 

  41. G. Ahlers, R.P. Behringer, “Evolution of turbulence from the Rayleigh-Bénard instability,” Phys. Rev. Lett. 40 (1978) 712–716.

    Article  ADS  Google Scholar 

  42. A. Libchaber, J. Maurer, “Local probe in a Rayleigh-Bénard experiment in liquid Helium,” J. Physique-Lettres 39 (1978) L369–L372.

    Article  Google Scholar 

  43. A. Pocheau, V. Croquette, P. Le Gal, “Turbulence in a cylindrical container of Argon near threshold of convection,” Phys. Rev. Lett. 55 (1985) 1094–1097.

    Article  ADS  Google Scholar 

  44. V. Croquette, “Convective pattern dynamics at low Prandtl number. Part I & II.” Contemporary Physics 30 (1989) 113–133, 153–171. 145. P. Manneville, (a) “A two-dimensional model for three-dimensional convective patterns in wide containers,” J. Physique 44 (1983) 759–765. (b) “Towards an understanding of weak turbulence close to the convection threshold in large aspect ratio systems,” J. Physique Lettres 44 (1983) L903–L916.

    Article  ADS  Google Scholar 

  45. S.W. Morris, E. Bodenschatz, D.S. Cannell, G. Ahlers, “The spatio-temporal structure of spiral-defect chaos,” Physica D 97 (1996) 164–179.

    Article  Google Scholar 

  46. (a) H.-w. Xi, J.D. Gunton, J. Viñals, “ Spiral defect chaos in a model of Rayleigh-Bénard convection,” Phys. Rev. Lett. 71 (1993) 2030–2033. (b) H.-W. Xi, J.D. Gunton, J. Viñals, “Study of spiral pattern formation in Rayleigh-Bénard convection,” Phys. Rev. E 47 (1993) R2987–R2990. (c) M. Bestehorn, M. Neufeld, R. Friedrich, H. Haken, “Comment on’ spiral-pattern formation in Rayeigh-Bénard convection’,” Phys. Rev. E 50 (1994) 625–626.(d) X.-J. Li, H.-W. Xi, J.D. Gunton, “Nature of the roll to spiral-defect-chaos transition,” Phys. Rev. E 57 (1998) 1705.

    Article  ADS  Google Scholar 

  47. W. Decker, W. Pesch, A. Weber, “Spiral defect chaos in Rayleigh-Bénard convection,” Phys. Rev. Lett. 73 (1994) 648–651.

    Article  ADS  Google Scholar 

  48. S. Ciliberto, P. Bigazzi, “Spatiotemporal intermittency in Rayleigh-Bénard convection,” Phys. Rev. Lett. 60 (1988) 286–289.

    Article  ADS  Google Scholar 

  49. F. Daviaud, M. Dubois, P. Bergé, “Spatio-temporal intermittency in quasi onedimensional Rayleigh-Bénard convection,” Europhys. Lett. 9 (1989) 441–446.

    Article  ADS  Google Scholar 

  50. F. Daviaud, “Experiments in 1D turbulence,” in [52].

    Google Scholar 

  51. P. Tabeling, O. Cardoso, eds., Turbulence. A Tentative Dictionary (Plenum, New York, 1994).

    MATH  Google Scholar 

  52. Y. Pomeau, “Front motion, metastability and subcritical bifurcations in hydrodynamics,” Physica D 23 (1986) 3–11.

    Article  ADS  Google Scholar 

  53. For general information consult: K. Kaneko, Theory and Application of Coupled Map Lattices (Wiley, New York, 1994).

    Google Scholar 

  54. (a) H. Chaté, P. Manneville, “Spatiotemporal intermittency in coupled map lattices,” Physica D 32 (1988) 409–422. For a review, see (b) H. Chaté, P. Manneville, “Spatiotemporal intermittency,” in [52].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. (a) P. Grassberger, T. Schreiber, “Phase transitions in coupled map lattices,” Physica D 50 (1991) 177–188. (b) G. Rousseau, B. Giorgini, R. Livi, H. Chaté, “Dynamical phases in a cellular automaton model for epidemic propagation,” Physica D 103 (1997) 554–563.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. (a) L. Howard, “Bounds on flow quantities,” Ann. Rev. Fluid Mech. 4 (1972) 473–494. (b) F.H. Busse, “The optimum theory of turbulence,” Adv. Appl. Mech. 18 (1978) 77-121. (c) C.R. Doering, P. Constantin, “Variational bounds on energy dissipation in incompressible flows. III. Convection,” Phys. Rev. E 53 (1996) 5957–5981.

    Article  ADS  Google Scholar 

  57. J. Sommeria, “The elusive ‘ultimate state’ of thermal convection,” Nature 398 (1999) 294–295 (news and views).

    Article  ADS  Google Scholar 

  58. S. Grossmann, D. Lohse, (a) “Scaling in thermal convection: A unifying theory,” J. Fluid Mech. 407 (2000) 27–56. (b) “Thermal convection for large Prandtl numbers,” Phys. Rev. Lett. 86 (2001) 3316–3319.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, “Turbulent convection at very high Rayleigh numbers,” Nature 404 (2000) 837–840, err. 406 (2000) 439.

    Article  ADS  Google Scholar 

  60. (a) X. Chavanne, F. Chillà, B. Castaing, B. Hébral, B. Chabaud, J. Chaussy, “Observation of the ultimate regime in Rayleigh-Bénard convection,” Phys. Rev. Lett. 79 (1997) 3648–3651. (b) X. Chavanne, F. Chillà, B. Chabaud, B. Castaing, B. Hébral, “Turbulent Rayleigh-Bénard convection in gaseous and liquid He,” Phys. Fluids 13 (2001) 1300–1320. (c) P.-E. Roche, B. Castaing, B. Chabaud, B. Hébral, “Observation of the 1/2 power law in Rayleigh-Bénard convection,” Phys. Rev. E 63 045303-1-4 (Rapid Communications).

    Article  ADS  Google Scholar 

  61. G. Ahlers, X. Xu, “Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection,” Phys. Rev. Lett. 86 (2001) 3320–3323.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Manneville, P. (2006). Rayleigh-Bénard Convection: Thirty Years of Experimental, Theoretical, and Modeling Work. In: Mutabazi, I., Wesfreid, J.E., Guyon, E. (eds) Dynamics of Spatio-Temporal Cellular Structures. Springer Tracts in Modern Physics, vol 207. Springer, New York, NY. https://doi.org/10.1007/978-0-387-25111-0_3

Download citation

Publish with us

Policies and ethics