Skip to main content

Spatial Inhomogeneities of Hydrodynamic Instabilities

  • Chapter

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 207))

Abstract

We describe the spatial inhomogeneities in hydrodynamic patterns, in the cases of confined systems such as the Rayleigh-Bénard convection and open systems such as as the Bénard-von Karman instability of vortex shedding. From experimental results, we define the typical correlation lengths and their scaling law in each situation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bergé, Y. Pomeau, and Ch. Vidal, Order Within Chaos (Hermann, Paris, 1984).

    MATH  Google Scholar 

  2. P. Bergé, Y. Pomeau, and Ch. Vidal, L’espace Chaotique (Hermann, Paris, 1998).

    MATH  Google Scholar 

  3. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Wu, S. Zaleski, and G. Zanetti, Scaling of hard thermal turbulence in Rayleigh-Bénard convection, J. Fluid. Mech. 204, 1 (1989).

    Article  ADS  Google Scholar 

  4. J.E. Wesfreid, Henri Bénard (1874–1939): Biographie scientifique, Bull. S.F.P. suppl. 81, 39 (1991) and see also Chapter 2 in this book.

    Google Scholar 

  5. J.E. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and P. Bergé, Critical effects in Rayleigh-Bénard convection, J. Phys. (France) 39, 725 (1978).

    Google Scholar 

  6. J.E. Wesfreid, P. Bergé, M. Dubois, Induced pre-transitional Rayleigh-Bénard convection, Phys. Rev A 19, 1231 (1979).

    Article  ADS  Google Scholar 

  7. J.E. Wesfreid, Etude de la convection de Rayleigh-Bénard au voisinage du seuil de convection, Thèse de doctorat d’Etat, Université de Paris-Sud, 1981.

    Google Scholar 

  8. P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, Boston, 1990).

    MATH  Google Scholar 

  9. Y. Pomeau and P. Manneville, Stability and fluctuations of a spatially periodic convective flow, J. Phys. Lett. 40, 609 (1979).

    Article  MathSciNet  Google Scholar 

  10. J.E. Wesfreid and V. Croquette, Forced phase diffusion in Rayleigh-Bénard convection, Phys. Rev. Lett. 45, 634 (1980).

    Article  ADS  Google Scholar 

  11. J.E. Wesfreid and S. Zaleski (eds), Cellular Structures in Instabilities, Lecture Notes in Physics 210, (Springer, Berlin 1984).

    Google Scholar 

  12. C. Mathis, M. Provansal, L. Boyer, The Bénard-von Karman instability: An experimental study near the threshold, J. Phys. Lett. 45, L-483 (1984).

    Article  Google Scholar 

  13. M.M. Zdravkovich, Flow Around Circular Cylinders (Oxford Science Publications, 1997).

    Google Scholar 

  14. C. Mathis, Propriétés des composantes de vitesse tranverse dans l’écoulement de Bénard-von Karman aux faibles nombres de Reynolds, Thèse de doctorat de l’Univeristé d’Aix-Marseille, 1983.

    Google Scholar 

  15. S. Goujon-Durand, J. E. Wesfreid, and P. Jenffer, Downstream evolution of the Bénard-von Karman instability, Phys. Rev. E 50, 308 (1994).

    Article  ADS  Google Scholar 

  16. J.E. Wesfreid, S. Goujon-Durand, and B.J.A. Zielinska, Global mode behavior of the streamwise velocity in wakes, J. Phys. II (France) 6, 1343 (1996).

    Article  Google Scholar 

  17. B.J.A. Zielinska and J.E. Wesfreid, On the spatial structure of global modes in wake flow, Phys. Fluids 7, 1418 (1995). See also B. Thiria, Propriétés dynamiques et de stabilité dans les écoulements ouverts forcés, Thèse de doctorat de l’Université de Paris VI, 2005.

    Article  MATH  ADS  Google Scholar 

  18. X. Yang and A. Zebib, Absolute and convective instability of a cylinder wake, Phys. Fluids A 1, 689 (1989).

    Article  ADS  Google Scholar 

  19. K. Hanneman and H. Oertel Jr, Numerical simulation of the absolutely and convectively unstable wake, J. Fluid Mech. 199, 55 (1989).

    Article  ADS  Google Scholar 

  20. P. Huerre and P.A. Monkewitz, Local and global instabilities in spatially developing flows, Annual Rev. Fluid Mech. 22, 473 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Couairon and J.M. Chomaz, Fully nonlinear global modes in slowly varying flows, Phys. Fluids 11, 3688 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. J. Dusek, P. le Gal, and Ph. Fraunié, A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake, J. Fluid Mech. 264, 59 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. V. Pagneux, A. Maurel, Etude numérique d’instabilités en écoulements ouverts confinés, Comp. Rend. Acad. Sci. (Paris) 319, 27 (1994).

    Google Scholar 

  24. A. Maurel, V. Pagneux, and J.E. Wesfreid, Mean-flow correction as nonlinear saturation mechanism, Europhys. Lett. 32, 217 (1995).

    Article  ADS  Google Scholar 

  25. M. Nishioka and H. Sato, Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers, J. Fluid Mech. 89, 49 (1978).

    Article  ADS  Google Scholar 

  26. M. Coutanceau and R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. I — Steady flow, J. Fluid Mech. 79, 231 (1977).

    Article  ADS  Google Scholar 

  27. B.J.A. Zielinska, S. Goujon-Durand, J. Dusek, and J.E. Wesfreid, Strongly nonlinear effect in unstable wakes, Phys. Rev. Lett. 79, 3893 (1997).

    Article  ADS  Google Scholar 

  28. B. Protas and J.E. Wesfreid, Drag force in the open-loop control of the cylinder wake in the laminar regime, Phys. Fluids 14, 810 (2002).

    Article  ADS  Google Scholar 

  29. B. Protas and J.E. Wesfreid, On the relation between the global modes and the spectra of drag and lift in periodic wake flows, C.R. Mécanique 331, 49 (2003).

    Article  MATH  ADS  Google Scholar 

  30. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, New York 1995).

    MATH  Google Scholar 

  31. E. Gaudin, B. Protas, S. Goujon-Durand, J. Wojciechowski, and J.E. Wesfreid, Spatial properties of velocity structure functions in turbulent wake flows, Phys. Rev. E 57, R9 (1998).

    Article  ADS  Google Scholar 

  32. B. Protas, S. Goujon-Durand, and J.E. Wesfreid, Scaling properties of two-dimensional turbulence in wakes behind bluff bodies, Phys. Rev. E 55, 4165 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Goujon-Durand, S., Wesfreid, J.E. (2006). Spatial Inhomogeneities of Hydrodynamic Instabilities. In: Mutabazi, I., Wesfreid, J.E., Guyon, E. (eds) Dynamics of Spatio-Temporal Cellular Structures. Springer Tracts in Modern Physics, vol 207. Springer, New York, NY. https://doi.org/10.1007/978-0-387-25111-0_11

Download citation

Publish with us

Policies and ethics