Skip to main content

Robot Manipulators and Control Systems

  • Chapter
Industrial Robots Programming
  • 2837 Accesses

Abstract

This book focuses on industrial robotic manipulators and on industrial manufacturing cells built using that type of robots. This chapter covers the current practical methodologies for kinematics and dynamics modeling and computations. The kinematics model represents the motion of the robot without considering the forces that cause the motion. The dynamics model establishes the relationships between the motion and the forces involved, taking into account the masses and moments of inertia, i.e., the dynamics model considers the masses and inertias involved and relates the forces with the observed motion, or instead calculates the forces necessary to produce the required motion. These topics are considered very important to study and efficient use of industrial robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.16 References

  1. Craig, J.J., “Introduction to Robotics, Mechanics and Control”, 2a Edition, Addison-Wesley, 1989.

    Google Scholar 

  2. Sciavicco, L., and Siciliano, B., “Modeling and Control of Robot Manipulators”-2nd Edition, McGraw-Hill, 1996.

    Google Scholar 

  3. De Wit, C.C., Siciliano, B., Bastin B., “Theory of Robot Control”, Springer-Verlag, London, 1996.

    MATH  Google Scholar 

  4. Hollerbach, J.M., “A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity”, IEEE Transactions on Systems, Man and Cybernetics, Novembro de 1980.

    Google Scholar 

  5. Pieper, D.L., “The Kinematics of Manipulators Under Computer Control”, memo. AIM72, Stanford Artificial Intelligence Laboratory, 1968.

    Google Scholar 

  6. Symon, K.R., “Mechanics”, 3a Edition, Addison-Wesley, 1971.

    Google Scholar 

  7. Fu, K., Gonzalez, R., Lee, C.S.G., “Robotics: Control, Sensing, Vision and Intelligence”, McGraw-Hill, 1987.

    Google Scholar 

  8. Klema, V.C., Laub, A.J., “The Singular Value Decomposition: Its Computation and Some Applications”, IEEE Transactions on Automatic Control, Vol. AC-25, No 2, April 1980.

    Google Scholar 

  9. Chiaverini, S., Siciliano, B., Egeland, O., “Review of the Damped Least-Squares Inverse Kinematics with Experiments on an Industrial Robot Manipulator”, IEEE Transactions on Control Systems Technology, Vol.2, No2, June 1994.

    Google Scholar 

  10. Golub, G.H., Van Loan, C.F., “Matrix Computations”, The Johns Hopkins University Press, Baltimore, Maryland, 1983.

    MATH  Google Scholar 

  11. Wampler, C.W., Leifer, L.J., “Applications of Damped Least-Squares Methods to Resolved-Rate and Resolved-Acceleration Control of Manipulators”, Journal of Dynamical Systems, Measurement and Control, Vol. 110, January of 1988.

    Google Scholar 

  12. Golub, G.H., Klema, V.C., Stewart, G.W., “Rank Degeneracy and Least Squares Problems”, Department of Computer Science, Stanford University, Technical Report STAN-CS-76-559, August 1976.

    Google Scholar 

  13. Maciejewski, A.A., Klein, C.A., “Numerical Filtering for the Operation of Robotic Manipulators through Kinematically Singular Configurations”, Journal Robotics Systems, Vol.5, 1988.

    Google Scholar 

  14. Chiaverini, S., “Estimate of the Two Smallest Singular Values of the Jacobian Matrix: Application to Damped Least-Squares Inverse Kinematics”, Journal of Robotic Systems, Vol.10, No8, 1993.

    Google Scholar 

  15. Luh, J.Y.S., Walker, M.W., Paul, R.P.C., “Resolved-Acceleration Control of Mechanical Manipulators”, IEEE Transactions on Automatic Control, Vol.AC-25, 1980.

    Google Scholar 

  16. Dote, Y., “Servo Motor and Motion Control using Digital Signal Processors”, Texas Instruments and Prentice-Hall, 1990.

    Google Scholar 

  17. Herdershot Jr., J.R., and Miller, T.J.E., “Design of Brushless Permanent-Magnet Motors”, Magna Physics Publishing and Clarendon Press, Oxford, 1995.

    Google Scholar 

  18. Crowder, R.M., “Electric Drives and their Controls”, Clarendon Press, Oxford, 1995.

    Google Scholar 

  19. Tamagawa Seiki Co. Ltd, “SmartSyn Brushless Resolvers, General Catalog”, Tamagawa Seiki, Japan, 2005.

    Google Scholar 

  20. ABB Robotics, “S4-IRB1400 Product Manual”-M94A, ABB Flexible Automation, 1994.

    Google Scholar 

  21. Hanselman, D.C., “Techniques for Improving Resolver-to-Digital Conversion Accuracy”, IEEE Transactions on Industrial Electronics, Vol.38, No. 6, December 1991.

    Google Scholar 

  22. Boyes, G., “Synchro and Resolver Conversion”, Analog Devices Inc. (Norwood, MA), 1980.

    Google Scholar 

  23. Analog Devices, “AD2S80A Resolver to Digital Converter-Data Sheet”, Data Conversion Manual, 1995.

    Google Scholar 

  24. Goldstein, H., “Classical Mechanics”, 2a Edição, Adison-Wesley, 1980.

    Google Scholar 

  25. Paul, Shimano and Mayer, “Differential Kinematic Control for Simple Manipulators”, IEEE Trans. SMC Vol.11, n.6 Junho de 1981.

    Google Scholar 

  26. ABB Robotics, “IRC5 documentation CD”, ABB Robotics, 2005

    Google Scholar 

  27. Deboor, C, “A Practical Guide to Splines”, Springer, New-York, 1979

    Google Scholar 

  28. Rogers, D., Adams, J.A., “Mathematical Elements for Computer Graphics”, McGraw-Hill, 1976.

    Google Scholar 

  29. Ogata, K., “Modern Control Engineering” Prentice-Hall Inc., 1970.

    Google Scholar 

  30. Halsall F., “Data Communications, Computer Networks and Open Systems”, Third Edition, Addison-Wesley, 1992.

    Google Scholar 

  31. Kusiak A., “Modelling and Design of Flexible Manufacturing Systems”, Elsevier Science Publishers, 1986.

    Google Scholar 

  32. Ou-Yang C. and Lin JS., “The Development of a Hybrid Hierarchical/Heterarchical Shop Floor Control System Applying Bidding Method in Job Dispatching”, Robotics and Computer-Integrated Manufacturing, 1998;14(3):199–217.

    Article  MathSciNet  Google Scholar 

  33. Waldner JB., “CIM, Principles of Computer Integrated Manufacturing”, John Wiley & Sons, 1992.

    Google Scholar 

  34. Liang GR., “A Hybrid Model of Hierarchical Control Architecture in Automated Manufacturing Systems”, in Advances in Factories of the Future, CIM and Robotics, Elsevier Science Publishers, 1993:277–286.

    Google Scholar 

  35. Baker AD., “Complete Manufacturing Control Using a Contract Net: A Simulation Study”, Proceedings of the IEEE International Conference on Computer Integrated Manufacturing, 1988: 100–9.

    Google Scholar 

  36. Shaw M., “A Distributed Scheduling Method for Computer Integrated Manufacturing; the use of Local Area Networks in Cellular Systems”, International Journal on Production Research, 1987;25(9):1285–1303.

    Google Scholar 

  37. Zhang Y., Kameda H. and Shimizu K., “Adaptive Bidding Load Balance Algorithms in Heterogeneous Distributed Systems”, Proceedings of the IEEE Second International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 1994:250–254.

    Google Scholar 

  38. RAP, Service Protocol Definition, ABB Flexible Automation, 1996.

    Google Scholar 

  39. Remote Connection Manual for the NX100 Controller, Motoman Robotics, 2005

    Google Scholar 

  40. Siciliano B., Villani L., Robot Force Control, Kluwer Academic Publishers International Series in Engineering and Computer Science, Boston, MA, 1999

    MATH  Google Scholar 

  41. Pires, JN, and Sá da Costa JMG, “A Real Time System for Position/Force Control of Mechanical Manipulators”, Proceedings of the 7th International Machine Design Conference, Ankara, Turkey, 1996.

    Google Scholar 

  42. De Schutter, J., and Van Brussel H., “Compliant Robot Motion I. A Formalism for Specifying Compliant Motion Tasks”, The International Journal of Robotics Research, August de 1988.

    Google Scholar 

  43. De Schutter, J. and Van Brussel, H., “Compliant Robot Motion II. A Control Approach Based on External Control Loops”, The International Journal of Robotics Research, August, 1988.

    Google Scholar 

  44. Craig JJ, and M.H Raibert MH, “A Systematic Method of Hybrid Position/Force Control of a Manipulator”, IEEE Computer Software Applications Conference, November, 1979.

    Google Scholar 

  45. Nilsson K., “Industrial Robot Programming”, Ph.D. Thesis, Department of Automatic Control, Lund Institute of Technology, May of 1996.

    Google Scholar 

  46. Hogan N., “Impedance Control: An Approach to Manipulation: Part I-Theory, Part II-Implementation, Part III-Applications”, ASME Journal of Dynamic Systems, Measurement, and Control”, March, 1985.

    Google Scholar 

  47. Khatib O., “A unified Approach for Motion and Force Control of Robotic Manipulators: The Operational Space Formulation”, IEEE Journal of Robotics and Automation, February 1987.

    Google Scholar 

  48. Volpe R. and Khosla P., “A theorical and Experimantal Investigation of Explicit Force Control Strategies for Manipulators”, IEEE Transactions on Automatic Control, November, 1993.

    Google Scholar 

  49. Volpe R. and Khosla P., “An Analysis of Manipulator Force Control Strategies Applied to an Experimentally Derived Model”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, July, 1992.

    Google Scholar 

  50. Volpe R. and Khosla P., “Computational Considerations in the Implementation of Force Control Strategies”, Journal of Intelligent and Robotic Systems, 9-1994

    Google Scholar 

  51. Volpe R. and Khosla P., “On the Equivalence of Second Order Impedance Control and Proportional Gain Explicit Force Control”, to appear in The International Journal of Robotics Research, 1994.

    Google Scholar 

  52. Siciliano B., “Parallel Force/Position Control of Robot Manipulators”, Proceedings of the 7th International Symposium of Robotics Research, Springer-Verlag, London, UK, 1996:79–89.

    Google Scholar 

  53. Chiaverini, S., “Force/Position Regulation of Compliant Robot Manipulators”, IEEE Transactions on Automatic Control, Março de 1994.

    Google Scholar 

  54. Pires, JN, “MATJR3PCI”, Users Manual of the JR3PCI Matlab Toolbox, http://robotics.dem.uc.pt/norberto/jr3pci/, 2001.

    Google Scholar 

  55. Pires, JN, “Using Matlab to Interface Industrial Robotic & Automation Equipment”, IEEE Robotics and Automation Magazine, September 2000.

    Google Scholar 

  56. JR3 Force/Torque Sensor Users Manual, JR3 Inc. Woodland, California, 2001.

    Google Scholar 

  57. JR3 PCI Web Site, http://robotics.dem.uc.pt/norberto/jr3pci/, 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Robot Manipulators and Control Systems. In: Industrial Robots Programming. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-23326-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-23326-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23325-3

  • Online ISBN: 978-0-387-23326-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics