Skip to main content

Learning, Memory, and Cognitive Processes in Deaf Children Following Cochlear Implantation

  • Chapter
Cochlear Implants: Auditory Prostheses and Electric Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

A cochlear implant is a sensory aid that uses a surgically implanted electrode array threaded within the scala tympani of the cochlea to present an electrical representation of sound directly to the auditory nerve of individuals who have a severe to profound bilateral sensorineural hearing loss. Cochlear implants work and they work reasonably well in many profoundly deaf adults and children. For these patients, a cochlear implant (CI) is a form of intervention, an alternative way of providing access to sound using electrical stimulation of the auditory system (see Niparko, Chapter 3). For postlingually deafened adults, a cochlear implant serves primarily as a sensory aid to restore lost hearing and regain contact with the world of sound as they knew it before the onset of their deafness. For the prelingually deaf child, in contrast, the electrical stimulation provided by a cochlear implant represents the introduction of a new sensory modality and an additional way to acquire knowledge about sound, sound sources, and the correlations between objects and events in their environment. Perhaps the most important benefit of a cochlear implant, however, is that it provides the prelingually deaf child with access to information about speech and spoken language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AM, Gathercole SE (2000) Limitations in working memory: implications for language development. Int J Lang Commun Disord 35:95–116.

    Article  PubMed  CAS  Google Scholar 

  • Ashcraft MH (1998) Fundamentals of Cognition. New York: Longman.

    Google Scholar 

  • Ashcraft MH (2002) Cognition, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Atkinson RC, Shiffrin RM (1968) The control of short-term memory. Sci Am 225:82–90.

    Article  Google Scholar 

  • Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short-term memory. J Verb Learn Verb Behav 14:575–589.

    Article  Google Scholar 

  • Baddeley A, Gathercole SE, Papagno C (1998) The phonological loop as a language learning device. Psychol Rev 105:158–173.

    Article  PubMed  CAS  Google Scholar 

  • Ball GF, Hulse SH (1998) Birdsong. Am Psychol 53:37–58.

    Article  CAS  Google Scholar 

  • Bench J, Kowal A, Bamford J (1979) The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. Br J Audiol 13:108–112.

    Article  PubMed  CAS  Google Scholar 

  • Bergeson TR, Pisoni DB (in press) Audiovisual speech perception in deaf adults and children following cochlear implantation. In: Calvert G, Spence C, Stein BE, eds. Handbook of Multisensory Integration. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bergeson TR, Pisoni DB, Davis RAO (2003) A longitudinal study of audiovisual speech perception by children with hearing loss who have cochlear implants. Volta Rev 103:347–370.

    PubMed  Google Scholar 

  • Biederman I, Shiffar MM (1987) Sexing day-old chicks: a case study and expert systems analysis of a difficult perceptual-learning task. J Exp Psychol Learn 13:640–645.

    Article  Google Scholar 

  • Blamey PJ, Sarant JZ, Paatsch LE, Barry JG (2001) Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing. J Speech Lang Hear Res 44:264–285.

    Article  PubMed  CAS  Google Scholar 

  • Burkholder R, Pisoni DB (2003) Speech timing and working memory in profoundly deaf children after cochlear implantation. J Exp Child Psychol 85:63–68.

    Article  PubMed  Google Scholar 

  • Carpenter PA, Miyake A, Just MA (1994) Working memory constraints in comprehension: evidence from individual differences, aphasia, and aging. In: Gernsbacher MA, ed. Handbook of Psycholinguistics. San Diego, CA: Academic Press, pp. 1075–1122.

    Google Scholar 

  • Cleary M, Pisoni DB, Geers AE (2001) Some measures of verbal and spatial working memory in eight- and nine-year-old hearing-impaired children with cochlear implants. Ear Hear 22:395–411.

    Article  PubMed  CAS  Google Scholar 

  • Cowan N, Wood NL, Wood PK, Keller TA, Nugent LD, Keller CV (1998) Two separate verbal processing rates contributing to short-term memory span. J Exp Psychol Gen 127:141–160.

    Article  PubMed  CAS  Google Scholar 

  • Cullington H, Hodges AV, Butts SL, Dolan-Ash S, Balkany TJ (2000) Comparison of language ability in children with cochlear implants placed in oral and total communication educational settings. Ann Otol Rhinol Laryngol Suppl 185: 121–123.

    PubMed  CAS  Google Scholar 

  • Ericsson KA, Pennington N (1993) The structure of memory performance in experts: implications for memory in everyday life. In: Davies GM, Logie RH, eds. Memory in Everyday Life. Amsterdam: Elsevier, pp. 241–282.

    Chapter  Google Scholar 

  • Flavell JH, Beach DH, Chinsky JM (1966) Spontaneous verbal rehearsal in a memory task as a function of age. Child Dev 37:283–299.

    Article  PubMed  CAS  Google Scholar 

  • Fry AF, Hale S (1996) Processing speed, working memory, and fluid intelligence: evidence for a developmental cascade. Psychol Sci 7:237–241.

    Article  Google Scholar 

  • Fryauf-Bertschy H, Tyler R, Kelsay D, Gantz B, Woodworth G (1997) Cochlear implant use by prelingually deafened children: the influences of age at implantation and length of device use. J Speech Lang Hear Res 40:183–199.

    PubMed  CAS  Google Scholar 

  • Gantz BJ, Rubinstein JT, Tyler RS, Teagle HF, et al. (2000) Long-term results of cochlear implants in children with residual hearing. Ann Otol Rhinol Laryngol Suppl 185:33–36.

    PubMed  CAS  Google Scholar 

  • Gathercole SE, Hitch GJ, Service E, Martin AJ (1997) Phonological short-term memory and new word learning in children. Dev Psychol 33:966–979.

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga MS (2000) The new cognitive neurosciences, 2nd ed. Cambridge, MA: MIT Press.

    Google Scholar 

  • Geers A, Brenner C (2003) Background and educational characteristics of prelingually deaf children implanted by five years of age. Ear Hear 24(suppl):2S-14S.

    Article  PubMed  Google Scholar 

  • Geers A, Brenner C, Davidson L (2003a) Factors associated with development of speech perception skills in children implanted by age five. Ear Hear 24(suppl):24S-35S.

    Article  PubMed  Google Scholar 

  • Geers AE, Nicholas JG, Sedey AL (2003b) Language skills of children with early cochlear implantation. Ear Hear 24(suppl):46S-58S.

    Article  PubMed  Google Scholar 

  • Giraud AL, Price CJ, Graham JM, Frackowiak RS (2001a) Functional plasticity of language-related brain areas after cochlear implantation. Brain 124:1307–1316.

    Article  PubMed  CAS  Google Scholar 

  • Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS (2001b) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663.

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, MacWhinney B (1997) Vocabulary acquisition and verbal short-term memory: computational and neural bases. Brain Lang 59:267–333.

    Article  PubMed  CAS  Google Scholar 

  • Haber RN (1969) Information-Processing Approaches to Visual Perception. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Haskins H (1949) A phonetically balanced test of speech discrimination for children. Unpublished master’s thesis, Northwestern University, Evanston IL.

    Google Scholar 

  • Hebb DO (1961) Distinctive features of learning in the higher animal. In: Delafresnaye JF, ed. Brain Mechanisms and Learning. New York: Oxford University Press.

    Google Scholar 

  • Hodges AV, Dolan-Ash M, Balkany TJ, Schloffman JJ, Butts SL (1999) Speech perception results in children with cochlear implants: contributing factors. Otolaryngol Head Neck Surg 12:31–34.

    Article  Google Scholar 

  • Kail R (1984) The Development of Memory in Children, 2nd ed. New York: WH Freeman.

    Google Scholar 

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9:637–671.

    Article  PubMed  Google Scholar 

  • Karpicke J, Pisoni DB (2000) Memory span and sequence learning using multimodal stimulus patterns: preliminary findings in normal-hearing adults. Research on Spoken Language Processing progress report No. 24. Bloomington, IN: Speech Research Laboratory, pp. 393–406.

    Google Scholar 

  • Kirk KI, Pisoni DB, Osberger MJ (1995) Lexical effects on spoken word recognition by pediatric cochlear implant users. Ear Hear 16:470–481.

    Article  PubMed  CAS  Google Scholar 

  • Kirk KI, Diefendorf AO, Pisoni DB, Robbins AM (1997) Assessing speech perception in children. In: Mendel LL, Danhauer JL, eds. Speech Perception Assessment. San Diego: Singular Press, pp. 101–132.

    Google Scholar 

  • Kirk KI, Pisoni DB, Miyamoto RT (2000) Lexical discrimination by children with cochlear implants: effects of age at implantation and communication mode. In: Waltzman SB, Cohen NL, eds. Cochlear Implants. New York: Thieme, pp. 252–254.

    Google Scholar 

  • Kirk KI, Miyamoto RT, Lento CL, Ying E, O’Neill T, Fears B (2002) Effects of age at implantation in young children. Ann Otol Rhinol Laryngol Suppl 189: 69–73.

    PubMed  Google Scholar 

  • Konishi M (1985) Birdsong: from behavior to neuron. Annu Rev Neurosci 8:125–170.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Nottebohm R (1969) Experimental studies in the ontogeny of avian vocalizations. In: Hinde RA, ed. Bird Vocalizations. New York: Cambridge University Press, pp. 29–48.

    Google Scholar 

  • Lachman R, Lachman JL, Butterfield EC (1979) Cognitive Psychology and Information Processing: An Introduction. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Landauer TK (1962) Rate of implicit speech. Percept Motor Skill 15:646.

    Article  CAS  Google Scholar 

  • Lee DS, Lee JS, Oh SH, Kim SK, et al. (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150.

    Article  PubMed  CAS  Google Scholar 

  • Levelt, WJM (1989) Speaking: From Intention to Articulation. ACT-MIT Press Series in Natural-Language Processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Levitt H (1970) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477.

    Article  Google Scholar 

  • Lindsay PH, Norman DA (1977) Human Information Processing: An Introduction to Psychology, 2nd ed. New York: Academic Press.

    Google Scholar 

  • Ling D (1993) Auditory-verbal options for children with hearing-impairment: helping pioneer an applied science. Volta Rev 95:187–196.

    Google Scholar 

  • Luce PA, Pisoni DB (1998) Recognizing spoken words: the neighborhood activation model. Ear Hear 19:1–36.

    Article  PubMed  CAS  Google Scholar 

  • Marler P, Peters S (1988) Sensitive periods for song acquisition from tape recordings and live tutors in the swamp sparrow, Melospiza-Georgiana. Ethology 77:76–84.

    Article  Google Scholar 

  • McGarr NS (1983) The intelligibility of deaf speech to experienced and inexperienced listeners. J Speech Hear Res 26:451–458.

    PubMed  CAS  Google Scholar 

  • McGilly K, Siegler RS (1989) How children choose among serial recall strategies. Child Dev 60:172–182.

    Article  PubMed  CAS  Google Scholar 

  • Meyer TA, Pisoni DB (1999) Some computational analyses of the PBK test: effects of frequency and lexical density on spoken word recognition. Ear Hear 20:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto RT, Svirsky MA, Robbins AM (1997) Enhancement of expressive language in prelingually deaf children with cochlear implants. Acta Otolaryngol 117:154–157.

    Article  PubMed  CAS  Google Scholar 

  • Neisser U (1967) Cognitive Psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • NIH Consensus Conference (1995) Cochlear implants in adults and children. JAMA 274:1955–1961.

    Article  Google Scholar 

  • Nittrouer S (2002) From ear to cortex: a perspective on what clinicians need to understand about speech perception and language processing. Lang Speech Hear Ser 33:237–252.

    Article  Google Scholar 

  • Penny CG (1989) Modality effects and the structure of short-term verbal memory. Mem Cognit 17:398–422.

    Article  Google Scholar 

  • Pisoni DB (2000) Cognitive factors and cochlear implants: some thoughts on perception, learning, and memory in speech perception. Ear Hear 21:70–78.

    Article  PubMed  CAS  Google Scholar 

  • Pisoni DB, Cleary M (2003) Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear Hear 24(suppl): 106S-120S.

    Article  PubMed  Google Scholar 

  • Pisoni DB, Cleary M, Geers AE, Tobey EA (2000) Individual differences in effectiveness of cochlear implants in children who are prelingually deaf: new process measures of performance. Volta Rev 101:111–164.

    Google Scholar 

  • Pisoni DB, Geers A (2000) Working memory in deaf children with cochlear implants: correlations between digit span and measures of spoken language processing. Ann Otol Rhinol Laryngol Suppl 109:92–93.

    Google Scholar 

  • Pisoni DB, Svirsky MA, Kirk KI, Miyamoto RT (1997) Looking at the “Stars”: a first report on the intercorrelations among measures of speech perception, intelligibility, and language development in pediatric cochlear implant users. Research on Spoken Language Processing progress report No. 21 (1996–1997). Bloomington, IN: Speech Research Laboratory, pp. 51–91.

    Google Scholar 

  • Ponton CW, Eggermont JJ (2001) Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 6:363–380.

    Article  PubMed  CAS  Google Scholar 

  • Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda A (1996a) Auditory system plasticity in children after long periods of complete deafness. Neuroreport 8:61–65.

    CAS  Google Scholar 

  • Ponton CW, Don M, Eggermont JJ, Waring MD, Masuda A (1996b) Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear Hear 17:430–437.

    Article  PubMed  CAS  Google Scholar 

  • Posner MI (1989) Foundations of Cognitive Science. Cambridge MA: MIT Press.

    Google Scholar 

  • Reitman WR (1965) Cognition and Thought: An Information-Processing Approach. New York: Wiley.

    Google Scholar 

  • Robbins A, Kirk KI (1996) Speech perception assessment and performance in pediatric cochlear implant users. Semin Hear 17:353–369.

    Article  Google Scholar 

  • Robbins AM, Svirsky M, Osberger MJ, Pisoni DB (1998) Beyond the audiogram: the role of functional assessments. In: Bess F, ed. Children with Hearing Impairment. Nashville, TN: Bill Wilkerson Center Press, pp. 105–124.

    Google Scholar 

  • Rosen VM, Engle RW (1997) Forward and backward serial recall. Intelligence 25:37–47.

    Article  Google Scholar 

  • Ross M, Lerman J (1979) A picture identification test for hearing-impaired children. J Speech Hear Res 13:44–53.

    Google Scholar 

  • Rudel RG, Denckla MB (1974) Relation of forward and backward digit repetition to neurological impairment in children with learning disability. Neuropsychologia 12:109–118.

    Article  PubMed  CAS  Google Scholar 

  • Sarant JZ, Blarney PJ, Dowell RC, Clark GM, Gibson WPR (2001) Variation in speech perception scores among children with cochlear implants. Ear Hear 22:18–28.

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory and consolidation. Science 277:821–825.

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Dorman MF, Spahr AJ (2002a) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:532–539.

    Article  PubMed  Google Scholar 

  • Sharma A, Dorman MF, Spahr AJ (2002b) Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 13:1365–1368.

    Google Scholar 

  • Siegler RS (1998) Children’s Thinking, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Skinner MW, Ketten DR, Holden LK, Harding GW, et al. (2002) CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol 3:332–350.

    Article  PubMed  Google Scholar 

  • Standing L, Curtis L (1989) Subvocalization rate versus other predictors of the memory span. Psychol Rep 65:487–495.

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251–262.

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Pallas SL, Roe AW (1990) Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends Neurosci 13:227–233.

    Article  PubMed  CAS  Google Scholar 

  • Svirsky MA, Robbins AM, Kirk KI, Pisoni DB, Miyamoto RT (2000a) Language development in profoundly deaf children with cochlear implants. Psychol Sci 11:153–158.

    Article  PubMed  CAS  Google Scholar 

  • Svirsky MA, Sloan RB, Caldwell M, Miyamoto RT (2000b) Speech intelligibility of prelingually deaf children with multichannel cochlear implants. Ann Otol Rhinol Laryngol Suppl 185:123–125.

    PubMed  CAS  Google Scholar 

  • Tait M, Lutman ME, Robinson K (2000) Preimplant measures of preverbal communicative behavior as predictors of cochlear implant outcomes in children. Ear Hear 21:18–24.

    Article  PubMed  CAS  Google Scholar 

  • Tobey EA, Geers AE, Morchower B, Perrin J, et al. (2000) Factors associated with speech intelligibility in children with cochlear implants. Ann Otol Rhinol Laryngol Suppl 185:28–30.

    PubMed  CAS  Google Scholar 

  • Tobey EA, Geers AE, Brenner C, Altuna D, Gabbert G (2003) Factors associated with development of speech production skills in children implanted by age five. Ear Hear 24(suppl):36S-45S.

    Article  PubMed  Google Scholar 

  • Watkins MJ, Watkins OC, Crowder RG (1974) The modality effect in free and serial recall as a function of phonological similarity. J Verb Learn Verb Behav 13:430–447.

    Article  Google Scholar 

  • Wechsler D (1991) Wechsler Intelligence Scale for Children, 3rd ed. (WISC-III). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wilson M (2001) The case for sensorimotor coding in working memory. Psychon Bull Rev 8:44–57.

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Emmorey K (1998) A “word length effect” for sign language: further evidence for the role of language in structuring working memory. Mem Cognition 26:584–590.

    Article  CAS  Google Scholar 

  • Yoshinaga-Itano C, Apuzzo ML (1998) Identification of hearing loss after age 18 months is not early enough. Am Ann Deaf 143:380–387.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga-Itano C, Sedey AL, Coulter DK, Mehl AL (1998) Language of early- and later-identified children with hearing loss. Pediatrics 102:1161–1171.

    Article  PubMed  CAS  Google Scholar 

  • Zwolan TA, Zimmerman-Phillips S, Asbaugh CJ, Hieber SJ, Kileny PR, Telian SA (1997) Cochlear implantation of children with minimal open-set speech recognition skills. Ear Hear 18:240–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pisoni, D.B., Cleary, M. (2004). Learning, Memory, and Cognitive Processes in Deaf Children Following Cochlear Implantation. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics