Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

Cochlear implants, besides restoring hearing sensation to otherwise deaf individuals, provide an excellent tool with which to investigate how the human central nervous system (CNS) processes complex patterns of sensory information. Throughout the lifetime of normal-hearing persons, the auditory CNS has been continually trained to extract meaningful speech (and other meaningful sounds) from a constant barrage of auditory sensory information. The CNS establishes networks to process auditory sensory information; for complex pattern recognition tasks, these networks can take as long as 10 to 12 years to fully develop (see Hartmann and Kral, Chapter 6). Once these networks are fully mature, auditory pattern recognition is highly robust to degradations in the sensory signal, as revealed by decades of speech perception research. For example, military cryptologists in the 1940s searched for a type of signal degradation that would render speech unintelligible during transmission (but could be decoded at the receiving end by reversing the degradation, thereby restoring intelligibility). To their amazement, even severe alterations to the speech signal did not destroy its intelligibility. One of the most well-known examples is the work of Licklider and Pollack (1948), who eliminated all amplitude information of the speech signal by means of “infinite clipping” (the signal waveform was simply absent or present, according to an amplitude threshold).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB (1994) How do humans process and recognize speech? IEEE Trans Speech Audio Proc 2:567–577.

    Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normalhearing and hearing-impaired listeners. Audiology 24:117–134.

    PubMed  CAS  Google Scholar 

  • Blesser B (1972) Speech perception under conditions of spectral transformation: I. Phonetic characteristics. J Speech Hear Res 15:5–41.

    PubMed  CAS  Google Scholar 

  • Boothroyd A, Mulhearn B, Gong J, Ostroff J (1996) Effects of spectral smearing on phoneme and word recognition. J Acoust Soc Am 100:1807–1818.

    PubMed  CAS  Google Scholar 

  • Brackmann DE, Hitselberger WE, Nelson RA, Moore JK, et al. (1993) Auditory brainstem implant. I: issues in surgical implantation. Otolaryngol Head Neck Surg 108:624–634.

    PubMed  CAS  Google Scholar 

  • Braida LD, Durlach NI, Lippmann RP, Hicks BL, Rabinowitz WM, Reed CM (1979) Hearing aids—a review of past research on linear amplification, amplitude compression, and frequency lowering. ASHA Monograph 19:1–114.

    Google Scholar 

  • Brill SM, Gstottner W, Helms J, von Ilberg C, et al. (1997) Optimization of channel number and stimulation rate for the fast continuous interleaved sampling strategy in the COMBI 40+. Am J Otol 18(6 suppl):S104–106.

    PubMed  CAS  Google Scholar 

  • Burns EM, Viemeister NF (1976) Nonspectral pitch. J Acoust Soc Am 60:863–869.

    Google Scholar 

  • Burns EM, Viemeister NF (1981) Played-again SAM: further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Google Scholar 

  • Cazals Y, Pelizzone M, Saudan O, Boex C (1994) Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. J Acoust Soc Am 96(4):2048–2054.

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Shannon RV (1998) Forward masked excitation patterns in multielectrode cochlear implants. J Acoust Soc Am 103(5):2565–2572.

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Shannon RV, Galvin JJ, Fu Q-J (2001) Spread of excitation and its influence on auditory perception with cochlear implants. Physiological and psychological bases of auditory function. In: Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R, eds. Proceedings of the 12th International Symposium on Hearing. Maastricht, NL: Sharker Publishing BV, pp. 403–410.

    Google Scholar 

  • Cosendai G, Pelizzone M (2001) Effects of the acoustical dynamic range on speech recognition with cochlear implants. Audiology 40:272–281.

    PubMed  CAS  Google Scholar 

  • Daniloff RG, Shiner TH, Zemlin WR (1968) Intelligibility of vowels altered in duration and frequency. J Acoust Soc Am 44:700–707.

    PubMed  CAS  Google Scholar 

  • Dorman MF, Loizou PC (1998) Identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations processors with two to nine channels. Ear Hear 19:162–166.

    PubMed  CAS  Google Scholar 

  • Dorman MF, Loizou PC, Rainey D (1997a) Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J Acoust Soc Am 102:2993–2996.

    PubMed  CAS  Google Scholar 

  • Dorman MF, Loizou PC, Rainey D (1997b) Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J Acoust Soc Am 102:2403–2411.

    PubMed  CAS  Google Scholar 

  • Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97:585–592.

    PubMed  CAS  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994a) Effect of temporal envelope smearing on speech perception. J Acoust Soc Am 95:1053–1064.

    PubMed  CAS  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994b) Effect of reducing slow temporal modulations on speech perception. J Acoust Soc Am 95:2670–2680.

    PubMed  CAS  Google Scholar 

  • Dubno JR, Dorman MF (1987) Effects of spectral flattening on vowel identification. J Acoust Soc Am 82:1503–1511.

    PubMed  CAS  Google Scholar 

  • Eddington DK, Rabinowitz WR, Tierney J, Noel V, Whearty M (1997) Speech processors for auditory prostheses. 8th quarterly progress report, NIH contract N01-DC-6–2100.

    Google Scholar 

  • Edgerton BJ, House WF, Hitselberger W (1984) Hearing by cochlear nucleus stimulation in humans. Ann Otol Rhinol Otolaryngol 91(suppl):117–124.

    Google Scholar 

  • Eisenberg LS, Maltan AA, Portillo F, Mobley JP, House WF (1987) Electrical stimulation of the auditory brainstem structure in deafened adults. J Rehabil Res Dev 24:9–22.

    PubMed  CAS  Google Scholar 

  • Fishman K, Shannon RV, Slattery WH (1997) Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J Speech Hear Res 40:1201–1215.

    CAS  Google Scholar 

  • Freyman RL, Nerbonne GP (1989) The importance of consonant-vowel intensity ratio in the intelligibility of voiceless consonants. J Speech Hear Res 32:524–535.

    PubMed  CAS  Google Scholar 

  • Freyman RL, Nerbonne GP, Cote HC (1991) Effect of consonant-vowel ratio modification on amplitude envelope cues for consonant recognition. J Speech Hear Res 34:415–426.

    PubMed  CAS  Google Scholar 

  • Friesen L, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163.

    PubMed  CAS  Google Scholar 

  • Fu Q-J (1997) Speech perception in acoustic and electric hearing. Ph.D. dissertation, University of Southern California, Los Angeles, CA.

    Google Scholar 

  • Fu Q-J (2002) Temporal processing and speech recognition in cochlear implant users. NeuroReport 13:1–5.

    Google Scholar 

  • Fu Q-J, Shannon RV (1998) Effects of amplitude nonlinearities on speech recognition by cochlear implant users and normal-hearing listeners. J Acoust Soc Am 104:2570–2577.

    PubMed  CAS  Google Scholar 

  • Fu Q-J, Shannon RV (1999a) Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Ear Hear 20(4):332–344.

    PubMed  CAS  Google Scholar 

  • Fu Q-J, Shannon RV (1999b) Recognition of spectrally degraded and frequencyshifted vowels in acoustic and electric hearing. J Acoust Soc Am 105:1889–1900.

    PubMed  CAS  Google Scholar 

  • Fu Q-J, Shannon RV (2000) Effect of stimulation rate on phoneme recognition in cochlear implants. J Acoust Soc Am 107(1):589–597.

    PubMed  CAS  Google Scholar 

  • Fu Q-J, Shannon RV, Wang X (1998b) Effects of noise and number of channels on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596.

    PubMed  CAS  Google Scholar 

  • Fu Q-J, Shannon RV, Galvin JJ III (2002) Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. J Acoust Soc Am 112:1664–1674.

    PubMed  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species-29 years later. J Acoust Soc Am 87:2592–2605.

    PubMed  CAS  Google Scholar 

  • Hanekom JJ, Shannon RV (1998) Gap detection as a measure of electrode interaction in cochlear implants. J Acoust Soc Am 104(4):2372–2384.

    PubMed  CAS  Google Scholar 

  • Hill FJ, McRae LP, McClellan RP (1968) Speech recognition as a function of channel capacity in a discrete set of channels. J Acoust Soc Am 44:13–18.

    PubMed  CAS  Google Scholar 

  • Lawson D, Wilson B, Finley C (1993) New processing strategies for multichannel cochlear prostheses. In: Allum JA, Allum-Mecklenburg DJ, Harris FP, Probst R, eds. Natural and Artificial Control of Hearing and Balance. Progress in Brain Research, vol. 97. Amsterdam: Elsevier, pp. 313–321.

    Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, Finley CC (1996) Speech processors for auditory prostheses. Third quarterly progress report, NIH contract N01-DC-5–2103.

    Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, van den Honert C, et al. (1998) Bilateral cochlear implants controlled by a single speech processor. Am J Otol 19(6):758–761.

    PubMed  CAS  Google Scholar 

  • Lawson DT, Brill S, Wolford R, Wilson BS, Schatzer R (2001) Speech processors for auditory prostheses. 9th quarterly progress report, NIH contract N01-DC-82105.

    Google Scholar 

  • Licklider JCR, Pollack I (1948) Effects of differentiation, integration, and infinite peak clipping on the intelligibility of speech. J Acoust Soc Am 20:42–51.

    Google Scholar 

  • Lim HH, Tong YC, Clark GM (1989) Forward masking patterns produced by intracochlear stimulation of one and two electrode pairs in the human cochlea. J Acoust Soc Am 86:971–980.

    PubMed  CAS  Google Scholar 

  • Lippmann RP (1996) Accurate consonant perception without mid-frequency energy. IEEE Trans Speech Audio Proc 4:66–69.

    Google Scholar 

  • Loizou PC, Dorman MF, Tu Z (1999) On the number of channels needed to understand speech. J Acoust Soc Am 106(4):2097–2103.

    PubMed  CAS  Google Scholar 

  • Loizou PC, Poroy O, Dorman M (2000a) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108(2):790–802.

    PubMed  CAS  Google Scholar 

  • Loizou PC, Dorman M, Poroy O, Spahr T (2000b) Speech recognition by normalhearing and cochlear implant listeners as a function of intensity resolution. J Acoust Soc Am 108:2377–2387.

    PubMed  CAS  Google Scholar 

  • Long CJ (2000) Bilateral cochlear implants: basic psychophysics. Ph.D. dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  • Long CJ, Eddington DE, Colburn HS, Rabinowitz WM, Whearty ME, Kadel-Garcia N (1998) Speech processors for auditory prostheses. 11th quarterly progress report, NIH contract N01-DC-6–2100.

    Google Scholar 

  • McCreery DG, Shannon RV, Moore JK, Chatterjee M, Agnew WF (1998) Accessing the tonotopic organization of the ventral cochlear nucleus by intranuclear microstimulation. IEEE Trans Rehabil Eng 6:391–399.

    PubMed  CAS  Google Scholar 

  • Mendel LL, Hamill BW, Crepeau LJ, Fallon E (1995) Speech intelligibility assessment in a helium environment. J Acoust Soc Am 97:628–636.

    PubMed  CAS  Google Scholar 

  • Miller G, Nicely P (1995) An analysis of perceptual confusions among some English consonants. J Acoust Soc Am 27:338–352.

    Google Scholar 

  • Moore BCJ (2001) Dead regions in the cochlea: diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends Amplification 5:1–34.

    Google Scholar 

  • Moore BCJ, Alcántara JI (2001) The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear Hear 22:268–278.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1997) A model of loudness perception applied to cochlear hearing loss. Aud Neurosci 3:289–311.

    Google Scholar 

  • Moore BCJ, Huss M, Vickers DA, Glasberg BR, Alcántara JI (2000) A test for the diagnosis of dead regions in the cochlea. Br J Audiol 34:205–224.

    PubMed  CAS  Google Scholar 

  • Nagafuchi M (1976) Intelligibility of distorted speech sounds shifted in frequency and time in normal children. Audiology 15:326–337.

    PubMed  CAS  Google Scholar 

  • Nuetzel JM, Hafter ER (1981) Discrimination of interaural delays in complex waveforms: spectral effects. J Acoust Soc Am 69:1112–1118.

    Google Scholar 

  • Otto SR, Shannon RV, Brackmann DE, Hitselberger WE, Staller S, Menapace C (1998) The multichannel auditory brainstem implant: performance in 26 patients. Otolaryngol Head Neck Surg 118:291–303.

    PubMed  CAS  Google Scholar 

  • Otto SA, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J (2002) The multichannel auditory brainstem implant update: performance in 60 patients. J Neurosurg 96:1063–1071.

    PubMed  Google Scholar 

  • Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA (2001) Effects of electrode configuration and place of stimulation on speech perception with cochlear implants. J Assoc Res Otolaryngol 2:87–103.

    PubMed  CAS  Google Scholar 

  • Plomp R (1983) The role of modulation in hearing. In: Klinke R, Hartmann R, eds. Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 270–276.

    Google Scholar 

  • Plomp R (1988) The negative effect of amplitude compression in multichannel hearing aids in light of the modulation-transfer function. J Acoust Soc Am 83:2322–2327.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Doucet JR (1991) Recovery from prior stimulation. I. Relationship to spontaneous firing rates of primary auditory neurons. Hear Res 55:215–222.

    PubMed  CAS  Google Scholar 

  • Rosen S (1992) Temporal information in speech and its relevance for cochlear implants. Philos Trans R Soc Lond Ser B Biol Sci 336:367.

    CAS  Google Scholar 

  • Rosen S, Faulkner A, Wilkinson L (1999) Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. J Acoust Soc Am 106:3629–3636.

    PubMed  CAS  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1983a) Multichannel electrical stimulation of the auditory nerve in man: I. Basic psychophysics. Hear Res 11:157–189.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1983b) Multichannel electrical stimulation of the auditory nerve in man: II. Channel interaction. Hear Res 12:1–16.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1985) Loudness summation as a measure of channel interaction in a multichannel cochlear implant. In: Schindler RA, Merzenich MM, eds. Cochlear Implants. New York: Raven Press, pp. 323–334.

    Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:1974–1982.

    Google Scholar 

  • Shannon RV, Otto SR (1990) Psychophysical measures from electrical stimulation of the human cochlear nucleus. Hear Res 47:159–168.

    PubMed  CAS  Google Scholar 

  • Shannon RV, Fayad J, Moore J, Lo W, et al. (1993) Auditory brainstem implant: II. Postsurgical issues and performance. Otolaryngol Head Neck Surg 108:634–642.

    PubMed  CAS  Google Scholar 

  • Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    PubMed  CAS  Google Scholar 

  • Shannon RV, Zeng F-G, Wygonski J (1998) Speech recognition with altered spectral distribution of envelope cues. J Acoust Soc Am 104:2467–2476.

    PubMed  CAS  Google Scholar 

  • Shannon RV, Fu Q-J, Wang X, Galvin J, Wygonski J (2001a) Critical cues for auditory pattern recognition in speech: implications for cochlear implant speech processor design. In: Breebaart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R, eds. Physiological and Psychological Bases of Auditory Function: Proceedings of the 12th International Symposium on Hearing. Maastricht, NL: Shaker Publishing BV, pp. 500–508.

    Google Scholar 

  • Shannon RV, Galvin JJ, Baskent D (2001b) Holes in hearing. J Assoc Res Otolaryngol 3:185–199.

    Google Scholar 

  • Skinner MW, Holden LK, Holden TA (1995) Effect of frequency boundary assignment on speech recognition with the SPEAK speech coding strategy. Ann Otol Rhinol Laryngol 104(suppl 166):307–311.

    Google Scholar 

  • Steeneken HJM, Houtgast T (1980) A physical method for measuring speechtransmission quality. J Acoust Soc Am 67:318–326.

    PubMed  CAS  Google Scholar 

  • ter Keurs M, Festen JM, Plomp R (1992) Effect of spectral envelope smearing on speech reception. I. J Acoust Soc Am 91:2872–2880.

    Google Scholar 

  • ter Keurs M, Festen JM, Plomp R (1993) Effect of spectral envelope smearing on speech reception. II. J Acoust Soc Am 93:1547–1552.

    PubMed  Google Scholar 

  • Tiffany WR, Bennett DA (1961) Intelligibility of slow-played speech. J Speech Hearing Res 4:248–258.

    PubMed  CAS  Google Scholar 

  • Turner C, Gantz B (2001) Combining acoustic and electric hearing for patients with high frequency hearing loss. Abstracts of the 2001 Conference on Implantable Auditory Prostheses, Asilomar, CA, p. 33.

    Google Scholar 

  • Turner CW, Souza PE, Forget LN (1995) Use of temporal envelope cues in speech recognition by normal and hearing-impaired listeners. J Acoust Soc Am 97(4):2568–2576.

    PubMed  CAS  Google Scholar 

  • Vandali AE, Whitford LA, Plant KL, Clark GM (2000) Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system. Ear Hear 21:608–624.

    PubMed  CAS  Google Scholar 

  • Van den Honert C, Stypulkowski PH (1984) Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res 14:225–243.

    PubMed  Google Scholar 

  • Van den Honert C, Stypulkowski PH (1987) Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hear Res 29:195–206.

    PubMed  Google Scholar 

  • van Hoesel RJM, Clark GM (1995) Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients. J Acoust Soc Am 97:2498–2503.

    PubMed  Google Scholar 

  • van Hoesel RJM, Clark GM (1997) Psychophysical studies with two binaural cochlear implant subjects. J Acoust Soc Am 102:495–507.

    PubMed  Google Scholar 

  • van Hoesel RJM, Tong YC, Hollow RD, Clark GM (1993) Psychophysical and speech perception studies: a case report on a binaural cochlear implant subject. J Acoust Soc Am 94:3178–3189.

    PubMed  Google Scholar 

  • Van Tasell DJ, Soli SD, Kirby VM, Widin GP (1987) Speech waveform envelope cues for consonant recognition. J Acoust Soc Am 82:1152–1161.

    PubMed  Google Scholar 

  • Van Tasell DJ, Greenfield DG, Logemann JJ, Nelson DA (1992) Temporal cues for consonant recognition: training, talker generalization, and use in evaluation of cochlear implants. J Acoust Soc Am 92:1247–1257.

    PubMed  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    PubMed  CAS  Google Scholar 

  • von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, et al. (1999) Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 61:(6) 334–340.

    Google Scholar 

  • Warren RM, Reiner KR, Bashford JA Jr, Brubaker BS (1995) Spectral redundancy: intelligibility of sentences heard through narrow spectral slits. Percept Psychophys 57(2):175–182.

    PubMed  CAS  Google Scholar 

  • Wilson BS (1997) The future of cochlear implants. Br J Audiol 31:205–225.

    PubMed  CAS  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) New levels of speech recognition with cochlear implants. Nature 352:236–238.

    PubMed  CAS  Google Scholar 

  • Wilson BS, Lawson DT, Zerbi M, Finley CC, Wolford RD (1995) New processing strategies in cochlear implantation. Am J Otol 16:669–675.

    PubMed  CAS  Google Scholar 

  • Wilson BS, Finley CC, Lawson D, Zerbi M (1997) Temporal representations with cochlea implants. Am J Otol 18(6 suppl):S30—S34.

    PubMed  Google Scholar 

  • Wilson BS, Wolford RD, Lawson DT (2000) Speech processors for auditory prostheses. 7th quarterly progress report. NIH contract N01-DC-8–2105.

    Google Scholar 

  • Zeng F-G (2002) Temporal pitch in electric hearing. Hear Res 174(1–2):101–106.

    PubMed  Google Scholar 

  • Zeng F-G, Galvin J (1999) Amplitude mapping and phoneme recognition in cochlear implant listeners. Ear Hear 20:60–74.

    PubMed  CAS  Google Scholar 

  • Zeng F-G, Shannon RV (1992) Loudness balance between electric and acoustic stimulation. Hear Res 60:231–235.

    PubMed  CAS  Google Scholar 

  • Zeng F-G, Shannon RV (1994) Loudness coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566.

    PubMed  CAS  Google Scholar 

  • Zeng F-G, Shannon RV (1999) Psychophysical laws revealed by electric hearing. NeuroReport 10(9):1–5.

    Google Scholar 

  • Zeng F-G, Turner CW, Relkin EM (1991) Recovery from prior stimulation. II: effects upon intensity discrimination. Hear Res 55(2): 223–230.

    PubMed  CAS  Google Scholar 

  • Zeng F-G, Galvin J, Zhang C-Y (1998) Encoding loudness by electric stimulation of the auditory nerve. NeuroReport 9(8):1845–1848.

    CAS  Google Scholar 

  • Zeng F-G, Grant G, Niparko J, Galvin J, et al. (2002) Speech dynamic range and its effect on cochlear implant performance. J Acoust Soc Am 111(1 pt 1):377–386.

    PubMed  Google Scholar 

  • Zwolan TA, Kileny PR, Ashbaugh C, Telian SA (1996) Patient performance with the Cochlear Corporation “20 + 2” implant: bipolar vs monopolar activation. Am J Otol 17:717–723.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shannon, R.V., Fu, QJ., Galvin, J., Friesen, L. (2004). Speech Perception with Cochlear Implants. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics