Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

Psychophysics is the study of sensory perception in response to physical stimuli. In the context of electrical stimulation with a cochlear implant, it is the study of the effect of the electrical stimulation patterns on perceived sound qualities. Perceptual qualities that can be measured with psychophysical techniques range from simple ones such as pitch, timbre, and loudness, to more complex percepts such as the categorical perception of the phonemes that constitute a speech signal. The basic psychophysical abilities that any sensory system must facilitate can be categorized into four types: detection of a stimulus; discrimination of two different stimuli; identification of a stimulus; and the scaling of a stimulus (which involves being able to rank similar stimuli along a particular dimension, for example loudness). In the sense of hearing, all of these psychophysical abilities are important for the accurate perception of the sounds that are significant in our everyday lives. In addition, we must be able to perceptually segregate one sound from another when there is more than one sound source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, et al. (1999) A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Biomed Eng 46:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Burns EM, Viemeister NF (1976) Nonspectral pitch. J Acoust Soc Am 60:863–869.

    Article  Google Scholar 

  • Busby PA, Tong YC, Clark GM (1993) The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am 94:124–131.

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, Geurts L, Wouters J (2000) Detection of small across-channel timing differences by cochlear implantees. Hear Res 141:140–154.

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM, Wouters J (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    Article  PubMed  Google Scholar 

  • Cazals Y, Pelizzone M, Kasper A, Montandon P (1991) Indication of a relation between speech perception and temporal resolution for cochlear impalntees. Ann Otol Rhinol Laryngol 100:893–895.

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Shannon RV (1998) Forward masked excitation patterns in multielectrode electrical stimulation. J Acoust Soc Am 103:2565–2572.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M, Fu QJ, Shannon RV (1998) Within-channel gap detection using dissimilar markers in cochlear implant listeners. J Acoust Soc Am 103:2515–2519.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M, Fu Q-J, Shannon RV (2000) Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. J Acoust Soc Am 107:1637–1644.

    Article  PubMed  CAS  Google Scholar 

  • Cohen LT, Busby PA, Clark GM (1996a) Cochlear implant place psychophysics. 2. Comparison of forward masking and pitch estimation data. Audiol Neurootol 1:278–292.

    Article  PubMed  CAS  Google Scholar 

  • Cohen LT, Busby PA, Whitford LA, Clark GM (1996b) Cochlear implant place psychophysics 1. Pitch estimation with deeply inserted electrodes. Audiol Neurootol 1:265–277.

    Article  PubMed  CAS  Google Scholar 

  • Collins LM, Zwolan T, Wakefield GH (1997) Comparison of electrode discrimination, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear implant subjects. J Acoust Soc Am 101:440–455.

    Article  PubMed  CAS  Google Scholar 

  • Culling JF, Summerfield Q (1995) Perceptual separation of concurrent speech sounds: absence of across-frequency grouping by common interaural delay. J Acoust Soc Am 98:785–797.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson GS, Viemeister NF (2000) Intensity discrimination and detection of amplitude modulation in electric hearing. J Acoust Soc Am 108:760–763.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson GS, Viemeister NF, Nelson DA (1997) Psychometric functions and temporal integration in electric hearing. J Acoust Soc Am 101:3706–3721.

    Article  PubMed  CAS  Google Scholar 

  • Durlach NI, Gabriel KJ, Colburn HS, Trahiotis C (1986) Interaural correlation discrimination: II. Relation to binaural unmasking. J Acoust Soc Am 79:1548–1557.

    Article  PubMed  CAS  Google Scholar 

  • Eddington DK, Dobelle WH, Brackmann DE, Mladejovsky MG, Parkin JL (1978) Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann Otol Rhinol Laryngol 87:5–39.

    Google Scholar 

  • Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users. NeuroReport 13:1635–1639.

    Google Scholar 

  • Gabriel KJ, Colburn HS (1981) Interaural correlation discrimination: I. Bandwidth and level dependence. J Acoust Soc Am 69:1394–1401.

    Article  PubMed  CAS  Google Scholar 

  • Gelfand SA (1998) Hearing. An Introduction to Psychological and Physiological Acoustics. New York: Marcel Dekker.

    Google Scholar 

  • Hanekom JJ, Shannon RV (1998) Gap detection as a measure of electrode interaction in cochlear implants. J Acoust Soc Am 104:2372–2384.

    Article  PubMed  CAS  Google Scholar 

  • Harris GG (1960) Binaural interactions of impulsive stimuli and pure tones. J Acoust Soc Am 32:685–692.

    Article  Google Scholar 

  • Henshall KR, McKay CM (2001) Optimizing electrode and filter selection in cochlear implant speech processor maps. J Am Acad Audiol 12:478–489.

    PubMed  CAS  Google Scholar 

  • Hirsh IJ (1948) The influence of interaural phase on interaural summation and inhibition. J Acoust Soc Am 20:536–544.

    Article  Google Scholar 

  • Jeffress LA, McFadden D (1971) Differences of interaural phase and level in detection and lateralization. J Acoust Soc Am 49:1169–1179.

    Article  PubMed  Google Scholar 

  • Jolly CN, Spelman FA, Clopton BM (1996) Quadrupolar stimulation for cochlear prostheses: modeling and experimental data. IEEE Trans Biomed Eng 43:857–865.

    Article  PubMed  CAS  Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, van den Honert C, et al. (1998) Bilateral cochlear implants controlled by a single speech processor. Am J Otol 19:758–761.

    PubMed  CAS  Google Scholar 

  • Levitt H, Rabiner LR (1967) Binaural release from masking for speech and gain in intelligibility. J Acoust Soc Am 42:601–608.

    Article  PubMed  CAS  Google Scholar 

  • Long CJ, Eddinton DK, Colburn HS, Rabinowitz WM, Whearty ME, Kadel-Garcia N (1998) Speech processors for auditory prostheses. Quarterly report of NIH contract N01-DC-6-2100, pp. 1–13.

    Google Scholar 

  • Marks LE (1978) Binaural summation of the loudness of pure tones. J Acoust Soc Am 64:107–113.

    Article  PubMed  CAS  Google Scholar 

  • McDermott HJ, McKay CM (1997) Musical pitch perception with electrical stimulation of the cochlea. J Acoust Soc Am 101:1622–1631.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, Carlyon RP (1999) Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains. J Acoust Soc Am 105:347–357.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ (1996) The perception of temporal patterns for electrical stimulation presented at one or two intracochlear sites. J Acoust Soc Am 100:1081–1092.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ (1998) Loudness perception with pulsatile electrical stimulation: the effect of interpulse intervals. J Acoust Soc Am 104:1061–1074.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ (1999) The perceptual effects of current pulse duration in electrical stimulation of the auditory nerve. J Acoust Soc Am 106:998–1009.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1994) Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees. J Acoust Soc Am 96:2664–2673.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1995a) Loudness summation for two channels of stimulation in cochlear implants: effects of spatial and temporal separation. Ann Otol Rhinol Laryngol Suppl 166:230–233.

    PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1995b) Pitch matching of amplitude-modulated current pulse trains by cochlear implantees: the effect of modulation depth. J Acoust Soc Am 97:1777–1785.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1996) The perceptual dimensions of singleelectrode and nonsimultaneous dual-electrode stimuli in cochlear implantees. J Acoust Soc Am 99:1079–1090.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Carlyon RP (2000) Place and temporal cues in pitch perception: Are they truly independent? 1:25–30.

    Google Scholar 

  • McKay CM, Remine MD, McDermott HJ (2001) Loudness summation for pulsatile electrical stimulation of the cochlea: Effects of rate, electrode separation, level, and mode of stimulation. J Acoust Soc Am 110:1514–1524.

    Article  PubMed  CAS  Google Scholar 

  • McKay CM, Henshall KR, Farrell RJ, McDermott HJ (2003) A practical method of predicting the loudness of complex electrical stimuli. J Acoust Soc Am 113:2054–2063.

    Article  PubMed  Google Scholar 

  • Moore BCJ (1997) An Introduction to the Psychology of Hearing. London: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Masking patterns for synthetic vowels in simultaneous and forward masking. J Acoust Soc Am 73:906–917.

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Gaunt T, Child T (1991) Across-channel masking of changes in modulation depth for amplitude- and frequency-modulated signals. Q J Exp Psychol 43A:327–347.

    Google Scholar 

  • Moore BCJ, Peters RW, Glasberg BR (1996) Detection of decrements and increments in sinusoids at high overall levels. J Acoust Soc Am 99:3669–3677.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DA (1994) Level-dependent critical bandwidth for phase discrimination. J Acoust Soc Am 95:1514–1524.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DA, Van Tasell DJ, Schroder AC, Soli S, Levine S (1995) Electrode ranking of 201Cplace pitch201D and speech recognition in electrical hearing. J Acoust Soc Am 98:1987–1999.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DA, Schmitz JL, Donaldson GS, Viemeister NF, Javel E (1996) Intensity discrimination as a function of stimulus level with electric stimulation. J Acoust Soc Am 100:2393–2414.

    Article  PubMed  CAS  Google Scholar 

  • Oxenham AJ (2000) Influence of spatial and temporal coding on auditory gap detection. J Acoust Soc Am 107:2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RD, Johnson-Davies D, Milroy R (1978) Amplitude-modulated noise: the detection of modulation versus the detection of modulation rate. J Acoust Soc Am 63:1904–1911.

    Article  PubMed  CAS  Google Scholar 

  • Pijl S, Schwarz DW (1995) Melody recognition and musical interval perception by deaf subjects stimulated with electrical pulse trains through single cochlear implant electrodes. J Acoust Soc Am 98:886–895.

    Article  PubMed  CAS  Google Scholar 

  • Richardson LM, Busby PA, Clark GM (1998) Modulation detection interference in cochlear implant subjects. J Acoust Soc Am 104:442–452.

    Article  PubMed  CAS  Google Scholar 

  • Schiffman SS, Reynolds LM, Young FW (1981) Introduction to Multidimensional Scaling: Theory, Methods and Applications. New York: Academic Press.

    Google Scholar 

  • Shannon RV (1983a) Multichannel electrical stimulation of the auditory nerve in man. I. Basic Psychophysics. Hear Res 11:157–189.

    Article  PubMed  CAS  Google Scholar 

  • Shannon RV (1983b) Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear Res 12:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Shannon RV (1985) Threshold and loudness functions for pulsatile stimulation of cochlear implants. Hear Res 18:135–143.

    Article  PubMed  CAS  Google Scholar 

  • Shannon RV (1989) Detection of gaps in sinusoids and pulse trains by patients with cochlear implants. J Acoust Soc Am 85:2587–2592.

    Article  PubMed  CAS  Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd RK, Javel E (1999) Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear Res 130:171–188.

    Article  PubMed  CAS  Google Scholar 

  • Stainsby TH (2000) The perception of musical sounds with cochlear implants. PhD Thesis, the University of Melbourne.

    Google Scholar 

  • Strickland EA, Viemeister NF, Fantini DA, Garrison MA (1989) Within- versus cross-channel mechanisms in detection of envelope phase disparity. J Acoust Soc Am 86:2160–2166.

    Article  PubMed  CAS  Google Scholar 

  • Tong YC, Clark GM (1986) Loudness summation, masking, and temporal interaction for sensations produced by electric stimulation of two sites in the human cochlea. J Acoust Soc Am 79:1958–1966.

    Article  PubMed  CAS  Google Scholar 

  • Tong YC, Dowell RC, Blarney PJ, Clark GM (1983a) Two-component hearing sensations produced by two-electrode stimulation in the cochlea of a deaf patient. Science 219:993–994.

    Article  PubMed  CAS  Google Scholar 

  • Tong YC, Blamey PJ, Dowell RC, Clark GM (1983b) Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. J Acoust Soc Am 74:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Townshend B, Cotter N, Van Compernolle D, White RL (1987) Pitch perception by cochlear implant subjects. J Acoust Soc Am 82:106–115.

    Article  PubMed  CAS  Google Scholar 

  • van Hoesel RJ, Clark GM (1995) Fusion and lateralization study with two binaural cochlear implant patients. Ann Otol Rhinol Laryngol Suppl 166:233–235.

    PubMed  Google Scholar 

  • van Hoesel RJ, Clark GM (1997) Psychophysical studies with two binaural cochlear implant subjects. J Acoust Soc Am 102:495–507.

    Article  PubMed  Google Scholar 

  • van Hoesel RJ, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630.

    Article  PubMed  Google Scholar 

  • van Hoesel RJ, Tong YC, Hollow RD, Clark GM (1993) Psychophysical and speech perception studies: a case report on a binaural cochlear implant subject. J Acoust Soc Am 94:3178–3189.

    Article  PubMed  Google Scholar 

  • van Wieringen A, Wouters J (1999) Gap detection in single- and multiple-channel stimuli by Laura cochlear implantees. J Acoust Soc Am 106:1925–1939.

    Article  PubMed  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Dye RH Jr (1988) Discrimination of interaural differences of level as a function of frequency. J Acoust Soc Am 83:1846–1851.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Sheft S (1989) Across-critical-band processing of amplitude-modulated tones. J Acoust Soc Am 85:848–857.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Popper AN, Fay RR, eds. (1993) Human Psychophysics, SHAR vol. 3. New York: Springer-Verlag.

    Google Scholar 

  • Zeng FG (1995) Cochlear implants in China. Audiology 34:61–75.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG (2004) Compression in cochlear implants. In: Bacon SP, Popper AN, Fay RR, eds. Compression: From Cochlea to Cochlear Implants. SHAR series. New York: Springer-Verlag pp. 184–220.

    Chapter  Google Scholar 

  • Zeng FG, Shannon RV (1992) Loudness balance between electric and acoustic stimulation. Hear Res 60:231–235.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG, Shannon RV (1994) Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566.

    Article  PubMed  CAS  Google Scholar 

  • Zeng F-G, Shannon RV (1999) Psychophysical laws revealed by electric hearing. NeuroReport 10:1931–1935.

    CAS  Google Scholar 

  • Zeng F-G, Galvin J Jr, Zhang C (1998) Encoding loudness by electric stimulation of the auditory nerve. NeuroReport 9:1845–1848.

    CAS  Google Scholar 

  • Zhang C, Zeng FG (1997) Loudness of dynamic stimuli in acoustic and electric hearing. J Acoust Soc Am 102:2925–2934.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E, Scharf B (1965) A model of loudness summation. Psych Rev 72:3–26.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKay, C.M. (2004). Psychophysics and Electrical Stimulation. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics