Skip to main content

Biophysics and Physiology

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

Electrical stimulation of the auditory nerve has been used as a treatment for sensory hearing loss for approximately 30 years. The typical cochlear implant candidate has sensorineural hearing loss, suggesting a lack of functional hair cells in the cochlea. The electrical fields produced by a cochlear implant directly excite auditory nerve fibers to elicit a hearing sensation. While the average performance with prosthetic devices has continued to improve over the years, there remains significant variation in the performance of individuals using the same implant design. Understanding the biophysical mechanisms of electrical stimulation and the response properties of the auditory nerve therefore can have considerable practical importance. Such information could lead to better designs of auditory prostheses, development of stimuli that could improve information transfer with current devices, and improved clinical procedures for fitting the device and assessing neurophysiological status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ, Brown CJ (1988) Electrically evoked brainstem potentials in cochlear implant patients with multi-electrode stimulation. Hear Res 36:153–162.

    PubMed  CAS  Google Scholar 

  • Abbas PJ, Brown CJ (1991) Electrically evoked auditory brainstem response: growth of response with current level. Hear Res 51:123–138.

    PubMed  CAS  Google Scholar 

  • Abbas PJ, Purdy SJ (1990) Use of forward masking of the EABR to evaluate channel interaction in cochlear implant users. (Abstract). Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Abbas PJ, Miller CA, Matsuoka AJ, Rubinstein JT (1998) The neurophysiological effects of simulated auditory prosthesis stimulation. Fourth quarterly progress report, NIH contract NO1-DC-6–2111.

    Google Scholar 

  • Abbas PJ, Brown CJ, Shallop JK, Firszt JB, et al. (1999a) Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20:45–59.

    PubMed  CAS  Google Scholar 

  • Abbas PJ, Rubinstein JT, Miller CA, Matsuoka AJ, Robinson BK (1999b) The neurophysiological effects of auditory prosthesis stimulation. Contract N01-DC-6-2111, final report.

    Google Scholar 

  • Abbas PJ, Brown CJ, Hughes ML, Gantz BJ, et al. (2000a) Electrically evoked compound action potentials (EAP) recorded from subjects who use the Nucleus CI24M device. Ann Otol Rhinol Laryngol 185:6–9.

    CAS  Google Scholar 

  • Abbas PJ, Miller CA, Rubinstein JT, Abkes BA, Runge-Samuelson C, Robinson BK (2000b) Effects of remaining hair cells on cochlear implant function. Third quarterly progress report, NIH contract N01-DC-9-2106.

    Google Scholar 

  • Abbas PJ, Miller CA, Rubinstein JT, Robinson BK (2001a) Effects of remaining hair cells on cochlear implant function. Seventh quarterly progress report, NIH contract N01-DC-9-2106.

    Google Scholar 

  • Abbas PJ, Miller CA, Rubinstein JT, Robinson BK, Hu N (2001b) The neurophysiological effects of simulated auditory prosthesis stimulation. Eighth quarterly progress report, NIH contract N01-DC-9-2107.

    Google Scholar 

  • Abbas PJ, Hughes ML, Brown CJ, Miller CA (2003) Physiological assessment of spatial tuning and channel interaction in cochlear implants. (Abstract) Association for Research in Otolaryngology Midwinter Research Meeting, Daytona Beach, FL.

    Google Scholar 

  • Achor LJ, Starr A (1980) Auditory brainstem responses in the cat. II. Effects of lesions. Elecroencephalogr Clin Neurophysiol 48:174–190.

    CAS  Google Scholar 

  • Aidley DJ (1998) Physiology of Excitable Cells, 4th ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Arnesen AR, Osen KK (1978) The cochlear nerve in the cat: topography, cochleotopy, and fiber spectrum. J Comp Neurol 178:661–678.

    PubMed  CAS  Google Scholar 

  • Arnold W (1987) Myelination of the human spiral ganglion. Acta Otolaryngol Suppl (Stockh). 436:76–84.

    CAS  Google Scholar 

  • Aubert LR, Clarke GP (1994) Reliability and predictive value of the electrically evoked auditory brainstem response. Br J Audiol 28:121–124.

    PubMed  CAS  Google Scholar 

  • Battmer RD, Kuzma J, Frohne C (1999a) Better modiolus-hugging electrode placement: electrophyiological and clinical results of new Clarion electrode positioner. 7th symposium on cochlear implantation in children, Iowa City, IA.

    Google Scholar 

  • Battmer RD, Zilberman Y, Haake P, Lenarz T (1999b) Simultaneous analog stimulation (SAS)—continuous interleaved sampler (CIS) pilot comparison study in Europe (clinical trial). Ann Otol Rhinol Laryngol 177:69–73.

    CAS  Google Scholar 

  • Bean CP (1974) A theory of microstimulation of myelinated fibers. Appendix to Abzug C, Maeda M, Peterson BW, Wilson VJ, eds. Cervical branching of lumbar vestibulospinal axons. J Physiol (Lond) 243:499–522.

    Google Scholar 

  • BeMent SL, Ranck JB Jr (1969a) A quantitative study of electrical stimulation of central myelinated fibers. Exp Neurol 24:147–170.

    PubMed  CAS  Google Scholar 

  • BeMent SL, Ranck JB Jr (1969b) A model for electrical stimulation of central myelinated fibers with monopolar electrodes. Exp Neurol 24:171–186.

    PubMed  CAS  Google Scholar 

  • Bierer JA, Middlebrooks JC (2002) Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J Neurophysiol 87:478–492.

    PubMed  Google Scholar 

  • Black RC, Clark GM (1980) Differential electrical excitation of the auditory nerve. J Acoust Soc Am 67:868–874.

    PubMed  CAS  Google Scholar 

  • Black RC, Clark GM, O’Leary SJ, Walters C (1983) Intracochlear electrical stimulation of normal and deaf cats investigated using brainstem response audiometry. Acta Otolargyngol (Stockh) Suppl 399:5–17.

    CAS  Google Scholar 

  • Bostock H (1983) The strength-duration relationship for excitation of myelinated nerve: computed dependency on membrance parameters. J Physiol (Lond) 341:59–74.

    CAS  Google Scholar 

  • Bostock H, Sears TA, Sherratt RM (1983) The spatial distribution of excitability and membrane current in normal and demyelinated mammalian nerve fibers. J Physiol (Lond) 341:41–58.

    CAS  Google Scholar 

  • Brill SM, Gstottner W, Helms J, von Ilberg C, et al. (1997) Optimization of channel number and stimulation rates for the fast continuous interleaved sampling strategy in the Combi40+. Am J Otol 18:S104S106.

    PubMed  Google Scholar 

  • Brimacombe JA, Eisenberg LS (1984) Tone decay in subjects with the singlechannel cochlear implant. Audiology 23:321–332.

    PubMed  CAS  Google Scholar 

  • Brown CJ, Abbas PJ (1990) Electrically evoked whole-nerve action potentials. II. Parametric data from the cat. J Acoust Soc Am 88:2205–2210.

    PubMed  CAS  Google Scholar 

  • Brown CJ, Abbas PJ, Gantz B (1990) Electrically evoked whole-nerve action potentials. I. Data from symbion cochlear implant users. J Acoust Soc Am 88:1385–1391.

    PubMed  CAS  Google Scholar 

  • Brown CJ, Abbas PJ, Borland J, Bertschy MR (1996) Electrically evoked whole nerve action potentials in Ineraid cochlear implant users: responses to different stimulating electrode configurations and comparison to psychophysical responses. J Speech Hear Res 39:453-467.

    PubMed  CAS  Google Scholar 

  • Brown CJ, Hughes ML, Lopez SM, Abbas PJ (1999). The relationship between EABR thresholds and levels used to program the Clarion speech processor. Ann Otol Rhinol Laryngol Suppl 108(177):150-157.

    Google Scholar 

  • Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J (2000) The relationship between EAP and EABR thresholds and levels used to program the Nucleus CI24M speech processor: data from adults. Ear Hear 21:151–163.

    PubMed  CAS  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Clark GM (1999). The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans Biomed Eng 46:1393–1404.

    PubMed  CAS  Google Scholar 

  • Buss E, Labadie RF, Brown CJ, Gross AJ, Grose JH, Pillsbury HC (2002) Outcome of cochlear implantation in pediatric auditory neuropathy Otol Neurotol 23:328–332.

    PubMed  Google Scholar 

  • Cartee LA (2000) Evaluation of a model of the cochlear neural membrane. II. Comparison of model and physiological measures of membrane properties measured in response to intrameatal electrical stimulation. Hear Res 146:153–166.

    PubMed  CAS  Google Scholar 

  • Cartee LA, van den Honert C, Finley CC, Miller RL (2000) Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear Res 146:143–152.

    PubMed  CAS  Google Scholar 

  • Chatterjee M (1999) Temporal mechanisms underlying recovery from forward masking in multielectrode-implant listeners. J Acoust Soc Am 105:1853–1863.

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Robert ME (2001) Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol 2:159–171.

    PubMed  CAS  Google Scholar 

  • Clay JR, DeFelice LJ (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophysics J 42:151–157.

    CAS  Google Scholar 

  • Cohen LT, Knight MR, Saunders E, Cowan RSC (2001) Characteristics of NRT measurement in CI24 Nucleus contour electrode and straight arrays. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Columbo J, Parkins CW (1987) A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res 31:287–312.

    Google Scholar 

  • Coste RL, Pfingst BE (1996) Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. III. Pulse polarity. J Acoust Soc Am 99:3099–3108.

    Google Scholar 

  • Davis H (1923) The relationship of the “chronaxie” of muscle to the size of the stimulating electrode. J Physiol 57:81–82.

    Google Scholar 

  • Donaldson GS, Nelson DA (2000) Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies. J Acoust Soc Am 107:1645–1658.

    PubMed  CAS  Google Scholar 

  • Dorman MF, Loizou PC, Fitzke J (1998) The identification of speech in noise by cochlear implant patients and normal-hearing listeners using 6-channel signal processors. Ear Hear 19:481–484.

    PubMed  CAS  Google Scholar 

  • Doucet JR, Relkin EM (1997) Neural contributions to the prestimulus compound action potential: implications for measuring the growth of the auditory nerve spike count as a function of stimulus intensity. J Acoust Soc Am 101:2720–2734.

    PubMed  CAS  Google Scholar 

  • Dynes SB (1996) Discharge characteristics of auditory nerve fibers for pulsatile electrical stimuli. Ph.D. thesis, MIT, Cambridge, MA.

    Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90.

    PubMed  CAS  Google Scholar 

  • Eddington DK (1980) Speech discrimination in deaf subjects with cochlear implants. J Acoust Soc Am 68:885–891.

    PubMed  CAS  Google Scholar 

  • Fang ZP, Mortimer JT (1991) Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Trans Biomed Eng 38:168–174.

    PubMed  CAS  Google Scholar 

  • Felix H, Johnsson LG, Gleeson MJ, deFraissinette A, Conen V (1992) Morphometric analysis of the cochlear nerve in man. Acta Otolaryngol 112:284–287.

    PubMed  CAS  Google Scholar 

  • Fernandez C (1952) Dimensions of the cochlea (guinea pig). J Acoust Soc Am 24:529–532.

    Google Scholar 

  • Finley CC, Wilson BS, White MW (1990) Models of neural responsiveness to electrical stimulation. In: Miller JM, Spelman FA, eds. Cochlear Implants: Models of the Electrically Stimulated Ear. New York: Springer-Verlag, pp. 55–96.

    Google Scholar 

  • Finley CC, Wilson BS, van den Honert C (1997a) Fields and EP responses for electrical stimuli: spatial distributors, channel interactions and regional differences along the tonotopic axis. Abstracts of Conference on Implantable Auditory Prostheses. New York: Springer.

    Google Scholar 

  • Finley CC, Wilson BS, van den Honert C, Lawson D (1997b) Speech processors for auditory prostheses. Sixth quarterly progress report, NIH contract NO1-DC-5-2103.

    Google Scholar 

  • Finley CC, Segel P, Boyle P, Faltys M (2001) Are variable spatial distributions of intracochlear evoked responses across subjects measures of variable nerve survival? (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Fishman K, Shannon RV, Slattery WH (1997) Speech recognition as function of the number of electrodes used in the SPEAK cochlear implant processor. J Speech Hear Res 40:1201–1215.

    CAS  Google Scholar 

  • Frijns JHM, de Snoo SL, Schoonhoven R (1995) Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 87:170–186.

    PubMed  CAS  Google Scholar 

  • Frijns JHM, de Snoo SL, ten Kate JH (1996) Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95:170–186.

    Google Scholar 

  • Frijns JHM, Briaire JJ, Grote JJ (2001) The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol Neurotol 22:340–349.

    PubMed  CAS  Google Scholar 

  • Fu Q, Shannon RV (1999) Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant. Ear Hear 20:321–331.

    PubMed  CAS  Google Scholar 

  • Fu Q, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:1–11.

    Google Scholar 

  • Gantz BJ, Tyler RS, Knutson JF, Woodworth G, et al. (1988) Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance. Laryngoscope 98:1100–1106.

    PubMed  CAS  Google Scholar 

  • Gantz B, Rubinstein J, Tyler R, Teagle H, et al. (2000) Long term results of cochlear implants in children with residual hearing. Ann Otol Rhinol Laryngol 12:33–36.

    Google Scholar 

  • Gardi JN (1985) Human brainstem and middle latency responses to electrical stimulation: preliminary observations. In: Schindler RA, Merzenich MM, eds. Cochlear Implants. New York: Raven Press, pp. 351–363.

    Google Scholar 

  • Goldstein MH, Kiang NYS (1958) Synchrony of neural activity in electric response evoked by transient acoustic stimuli. J Acoust Soc Am 30:107–114.

    Google Scholar 

  • Grill WM Jr, Mortimer JT (1996) The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43:161–166.

    PubMed  Google Scholar 

  • Grundfest J (1932) Excitation and accommodation in nerve. Proc R Soc B 119:305–355.

    Google Scholar 

  • Haenggeli A, Zhang JS, Vischer MW, Pelizzone M, Rouiller EM (1998) Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates. Audiology 37:353–371.

    PubMed  CAS  Google Scholar 

  • Hall RD (1990) Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res 45:123–136.

    PubMed  CAS  Google Scholar 

  • Hartmann R, Klinke R (1990a) Response characteristics of nerve fibers to patterned electrical stimulation. In: Miller JM, Spelman FA, eds. Cochlear Implants: Models of the Electrically Stimulated Ear. New York: Springer-Verlag, pp. 135–160.

    Google Scholar 

  • Hartmann R, Klinke R (1990b) Impulse patterns of auditory nerve fibres to extraand intracochlear electrical stimulation. Acta Oto-Laryngol 469:128–134.

    CAS  Google Scholar 

  • Hartmann R, Topp G, Klinke R (1984) Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hear Res 13:46–62.

    Google Scholar 

  • Hartmann R, Pfennigdorff T, Klinke R (1994) Evoked potentials from the auditory nerve following sinusoidal electrical simulation of the cochlea: new possibilities for preoperative testing in cochlear-implant candidates? Acta Otolaryngol (Stockh) 114:495–500.

    CAS  Google Scholar 

  • Hatsushika S-I, Shepherd RK, Tong YC, Clark GM, Funasaka S (1990) Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann Otol Rhinol Laryngol 99:871–876.

    PubMed  CAS  Google Scholar 

  • Henry BA, McKay CM, McDermott HJ, Clark GM (2000) The relationship between speech perception and electrode discrimination in cochlear implantees. J Acoust Soc Am 108:1269–1280.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544.

    CAS  Google Scholar 

  • Hong SH, Brown CJ, Hughes ML, Abbas PJ (1998) Electrically evoked compound action potentials using neural response telemetry in CI24M: refractory recovery function of the auditory nerve. (Abstract) Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Igarashi M, Mahon RG Jr, Konishi S (1968) Comparative measurements of cochlear apparatus. J Speech Hear Res 11(2):229–335.

    PubMed  CAS  Google Scholar 

  • Igarashi M, Takahashi M, Alford BR (1976) Cross sectional area of scala tympani in human and cat. Arch Otolaryngol 102:428–429.

    PubMed  CAS  Google Scholar 

  • Javel E (1990) Acoustic and electrical encoding of temporal information. In: Miller JM, Spelman FA, eds. Models of the Electrically Stimulated Cochlea. New York: Springer-Verlag, pp. 247–292.

    Google Scholar 

  • Javel E, Shepherd RK (2000) Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear Res 140:45–76.

    PubMed  CAS  Google Scholar 

  • Javel E, Tong YC, Shepherd RK, Clark GM (1987) Responses of cat auditory nerve fibers to biphasic electrical current pulses. Ann Otol Rhinol Laryngol 96 (Suppl 128):26–30.

    Google Scholar 

  • Jewett DL, Romano MN, Williston JS (1970) Human auditory evoked potentials: possible brainstem components detected on scalp. Science 167:1517–1518.

    PubMed  CAS  Google Scholar 

  • Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3:275–299.

    PubMed  CAS  Google Scholar 

  • Jolly CN, Spelman FA, Clopton BM (1996) Quadrupolar stimulation for cochlear prostheses: modeling and experimental data. IEEE Trans Biomed Eng 43:857–865.

    PubMed  CAS  Google Scholar 

  • Jones RC, Stevens SS, Lurie MH (1940) Three mechanisms of hearing by electrical stimulation. J Acoust Soc Am 12:281–290.

    Google Scholar 

  • Kato G (1934) The Microphysiology of Nerve. Tokyo: Maruzen.

    Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol 81:714–730.

    CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Auditory Nerve: Fibers in the Cat’s Auditory Nerve. Cambridge: MIT Press.

    Google Scholar 

  • Kiang NYS, Moxon EC, Kahn AR (1976) The relationship of gross potentials recorded from the cochlea to single-unit activity in the auditory nerve. In: Rubin RJ, Elberling C, Salomon G, eds. Electrocochleography. Baltimore: University Park Press, pp. 96–115.

    Google Scholar 

  • Kiefer J, von Ilberg C, Reimer B, Knecht R, et al. (1998) Results of cochlear implantation in patients with severe to profound hearing loss—implications for patient selection. Audiology 37:382–395.

    PubMed  CAS  Google Scholar 

  • Kiefer J, Tillein J, Sturzebecher E, Pfennigdorff T, et al. (2001) Combined electricacoustic stimulation of the auditory system. Results of an ongoing clinical study. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Killian MJP, Klis SFL, Smoorenburg GF (1994) Adaptation in the compound action potential response of the guinea pig VIIIth nerve to electric stimulation. Hear Res 81:66–82.

    PubMed  CAS  Google Scholar 

  • Kirk DL, Yates GK (1994) Evidence for electrically evoked traveling waves in the guinea pig cochlea. Hear Res 74:38–50.

    PubMed  CAS  Google Scholar 

  • Kral A, Hartmann R, Mortazavi D, Klinke R (1998) Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res 121:11–28.

    PubMed  CAS  Google Scholar 

  • Lapicque L (1907) Recherches quantitatifs sur l’excitation electrique des nerfs traitee comme un polarisation. J Physiol (Paris) 9:622–635.

    Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, Finley CC (1996) Speech processors for auditory prostheses. Third quarterly progress report, NIH contract N01-DC-5-2103.

    Google Scholar 

  • Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–34.

    PubMed  CAS  Google Scholar 

  • Lenarz T (2001) Channel interactions with different electrode arrays: results from animal studies and psychophysics and relation to possible damage. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Liang DH, Lusted HS, White RL (1999) The nerve-electrode interface of the cochlear implant: current spread. IEEE Trans Biomed Eng 46:35–43.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve responses from cats raised in a low-noise chamber. J Acoust Soc Am 63:442.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditorynerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176.

    PubMed  CAS  Google Scholar 

  • Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179.

    PubMed  CAS  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001a) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379.

    PubMed  CAS  Google Scholar 

  • Litvak L, Smith Z, Delgutte B, Eddington DK (2001b) Study of a potential stimulation strategy that utilizes a conditioning high-frequency pulse train: Single unit recordings. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Loeb GE, White MW, Jenkins WM (1983) Biophysical considerations in electrical stimulation of the auditory nervous system. Ann NY Acad Sci 405:123–136.

    PubMed  CAS  Google Scholar 

  • Lusted HS, Shelton C, Simmons FB (1988) Comparison of electrode sites in electrical stimulation of the cochlea. Laryngoscope 94:878–882.

    Google Scholar 

  • Madden C, Hilbert L, Rutter M, Greinwald J, Choo D (2002) Pediatric implantation in auditory neuropathy. Otol Neurotol 23:163–168.

    PubMed  Google Scholar 

  • Marsh RR, Yamane H, Potsic PP (1981) Effect of site of stimulation on the guinea pig’s electrically evoked brainstem response. Otolaryngol Head Neck Surg 89:125–130.

    PubMed  CAS  Google Scholar 

  • Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000a) The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings. Hear Res 149:115–128.

    PubMed  CAS  Google Scholar 

  • Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000b) The neuronal response to electrical constant-amplitude pulse train stimulation: additive gaussian noise. Hear Res 149:129–137.

    PubMed  CAS  Google Scholar 

  • Matsuoka AJ, Rubinstein JT, Abbas PJ, Miller CA (2001) The effects of interpulse interval on stochastic properties of electrical stimulation: modes and measurements. IEEE Trans Biomed Eng 48:416–424.

    PubMed  CAS  Google Scholar 

  • McAnally KI, Clark GM (1994) Stimulation of residual hearing in the cat by pulsatile electrical stimulation of the cochlea. Acta Otolaryngol (Stockh) 114:366–372.

    CAS  Google Scholar 

  • McAnally KI, Clark GM, Syka J (1993) Hair cell mediated responses to the auditory nerve to sinusoidal electrical stimulation of the cochlea in cat. Hear Res 67:55–68.

    PubMed  CAS  Google Scholar 

  • McAnally KI, Brown M, Clark GM (1997) Acoustic and electric forward-masking of the auditory nerve compound action potential: evidence for linearity of electromechanical transduction. Hear Res 106:146–153.

    PubMed  CAS  Google Scholar 

  • McIntyre CC, Grill WM (2000) Selective microstimulation of central nervous system neurons. Ann Biomed Eng 28:219–233.

    PubMed  CAS  Google Scholar 

  • McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337.

    PubMed  CAS  Google Scholar 

  • Melcher JR, Guinan JJ Jr, Knudson IM, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes. Hear Res 93:28–51.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, White MW (1997) Cochlear implant: the interface problem. Biomed Eng Inst Funct Elect Stim 3:321–340.

    Google Scholar 

  • Miller CA, Abbas PJ, Brown CJ (1993) Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea. Hear Res 66:130–142.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Robinson BK (1994) The use of long-duration current pulses to assess nerve survival. Hear Res 78:11–26.

    PubMed  CAS  Google Scholar 

  • Miller CA, Woodruff KE, Pfingst BE (1995a) Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures. Hear Res 92:85–99.

    PubMed  CAS  Google Scholar 

  • Miller CA, Faulkner MJ, Pfingst BE (1995b) Functional responses from guinea pigs with cochlear implants. II. Changes in electrophysiological and psychophysical measures over time. Hear Res 92:100–111.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Rubinstein JT, Robinson BK, Matsuoka AJ, Woodworth G (1998) Electrically evoked compound action potentials from cat: responses to monopolar, monophasic stimulation. Hear Res 119:142–154.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ (1999a) Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear Res 130:197–218.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Rubinstein JT (1999b) An empirically based model of the electrically evoked compound action potential. Hear Res 135:1–18.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Brown CJ (2001a) Physiological measurements of spatial excitation patterns produced by electrical stimulation. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Miller CA, Abbas PJ, Robinson BK (2001b) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2:216–232.

    PubMed  CAS  Google Scholar 

  • Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson C (2001c) Auditory nerve responses to monophasic and biphasic electric stimuli. Hear Res 151:79–94.

    PubMed  CAS  Google Scholar 

  • Miller CA, Abbas PJ, Nourski KV, Hu N, Robinson BK (2003) Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hear Res 175:200–214.

    PubMed  Google Scholar 

  • Miller JM, Duckert LG, Malone MA, Pfingst BE (1983) Cochlear prostheses: stimulation-induced damage. Ann Otol Rhinol Laryngol 92:599–609.

    PubMed  CAS  Google Scholar 

  • Morse RP, Evans EF (1996) Enhancement of vowel coding for cochlear implants by addition of noise. Nat Med 2:928–932.

    PubMed  CAS  Google Scholar 

  • Moss F, Chiou-Tan F, Klinke R (1996) Will there be noise in their ears? Nat Med 2:860–862.

    PubMed  CAS  Google Scholar 

  • Moxon EC (1971) Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Doctoral dissertation, MIT, Cambridge, MA.

    Google Scholar 

  • Nadol JB Jr (1990) Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res 49:141–154.

    PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single channel currents recorded from membrane of denervated frog muscle cells. Nature 260:799–802.

    PubMed  CAS  Google Scholar 

  • Nelson DA, Donaldson GS (2001) Psychophysical recovery from single-pulse forward masking in electric hearing. J Acoust Soc Am 109:2921–2933.

    PubMed  CAS  Google Scholar 

  • Ni D, Shepherd RK, Seldon HL, Xu S-A, Clark GM, Millard RE (1992) Cochlear pathology following chronic electrical stimulation of the auditory nerve. I. Normal hearing kittens. Hear Res 62:63–81.

    CAS  Google Scholar 

  • O’Leary SJ, Clark GM, Tong YC (1995) Model of discharge rate from auditory nerve fibers responding to electrical stimulation of the cochlea: identification of cues for current and time-interval coding. Ann Otol Rhinol Laryngol 166:121–123.

    Google Scholar 

  • Osberger MJ, Fisher L (1999) SAS-CIS preference study in postlingually deafened adults implanted with the CLARION cochlear implant (Clinical Trial). Ann Otol Rhinol Laryngol 177:74–79.

    CAS  Google Scholar 

  • Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol (Stockh) 89(1–2):53–62.

    CAS  Google Scholar 

  • Parkins CW (1989) Temporal response patterns of auditory nerve fibers to electrical stimulation in deafened squirrel monkeys. Hear Res 41:137–168.

    PubMed  CAS  Google Scholar 

  • Parkins CW, Colombo J (1987) Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hear Res 31:267–286.

    PubMed  CAS  Google Scholar 

  • Pelizzone M, Boex C, de Balthasar C, Kos M-I (2001) Electrode interactions in Ineraid and Clarion subjects. (Abstract) Conference on Implantable Auditory Prostheses. Pacific Grove. CA.

    Google Scholar 

  • Pfingst BE, Zwolan TA, Holloway LA (1997) Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear Res 112:247–260.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA (2001) Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. J Assoc Res Otolaryngol 2:87–103.

    PubMed  CAS  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440.

    PubMed  Google Scholar 

  • Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33:974–977.

    PubMed  CAS  Google Scholar 

  • Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36:676–682.

    PubMed  CAS  Google Scholar 

  • Rattay F, Leao RN, Felix H (2001) A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res 153:64–79.

    PubMed  CAS  Google Scholar 

  • Rebscher SJ, Snyder RL, Leake PA (2001) The effect of electrode configuration and duration of deafness on threshold and selectivity of responses to intracochlear electrical stimulation. J Acoust Soc Am 109:2035–2048.

    PubMed  CAS  Google Scholar 

  • Reilly JP, Freeman VT, Larkin WD (1985) Sensory effects of transient electrical stimulation—evaluation with neuroelectric model. IEEE Trans Biomed Eng 23:1001–1011.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using Mossbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Risberg A, Agelfors E, Lindstrom B, Bredberg G (1990) Electrophonic hearing and cochlear implant. Acta Otolaryngol 469:156–163.

    CAS  Google Scholar 

  • Romand R, Romand MR, Marty R (1981) Regional differences in fiber size in the cochlear nerve. J Comp Neurol 198:1–5.

    PubMed  CAS  Google Scholar 

  • Rubinstein JT (1988) Quasi-static analytical model for electrical stimulation of the auditory nervous system. Doctoral dissertation, University of Washington, Seattle, WA.

    Google Scholar 

  • Rubinstein JT (1993) Axon termination conditions for electrical stimulation. IEEE Trans Biomed Eng 40:654–663.

    PubMed  CAS  Google Scholar 

  • Rubinstein JT (1995) Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophysical J 68:779–785.

    CAS  Google Scholar 

  • Rubinstein JT, Matsuoka AJ, Abbas PJ, Miller CA (1997) The neurophysiological effects of simulated auditory prosthesis stimulation. Second quarterly progress report, NIH contract N01-DC-6-2111.

    Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118.

    PubMed  CAS  Google Scholar 

  • Rubinstein JT, Miller CA, Abbas PJ, Mino H (2001) Effects of remaining hair cells on cochlear implant function. Sixth quarterly progress report, NIH contract N01-DC-9-2106.

    Google Scholar 

  • Rubinstein JT, Hong R, Wehner D, Chen G (2002) Stochastic resonance in CI patients. (Abstract) Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Runge-Samuelson CL, Rubinstein JT, Abbas PJ, Miller CA, et al. (2001) Sinusoidal electrical stimulation of the auditory nerve with and without high-rate pulses. (Abstract) Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Rushton WAH (1927) The effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve. J Physiol (Lond) 63:357–377.

    CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847.

    PubMed  CAS  Google Scholar 

  • Sando I (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol (Stockh) 59:417–435.

    Google Scholar 

  • Saunders E, Cohen LT, Treaba C (1998) A new precurved electrode array: benefits as measured by initial psychophysics. 7th symposium on cochlear implantation in children, Iowa City, IA.

    Google Scholar 

  • Shallop JK, Beiter AL, Goin DW, Mischke RE (1990) Electrically evoked auditory brainstem responses (EABR) and middle latency responses (EMLR) obtained from patients with the Nucleus multichannel cochlear implant. Ear Hear 11:5–15.

    PubMed  CAS  Google Scholar 

  • Shallop JK, VanDyke L, Goin DW, Mischke RE (1991) Prediction of behavioral threshold and comfort values for Nucleus 22-channel implant patients from electrical auditory brainstem response test results. Ann Otol Rhinol Laryngol 100:896–898.

    PubMed  CAS  Google Scholar 

  • Shallop JK, Peterson A, Facer GW, Fabry LB, Driscoll CL (2001) Cochlear implants in five cases of auditory neuropathy: postoperative findings and progress. Laryngoscope 11:155–162.

    Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1990) Forward masking in patients with cochlear implants. J Acoust Soc Am 88:741–744.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–114.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Javel E (1999) Electrical stimulation of the auditory nerve. II. Effect of stimulus waveshape on single fibre response properties. Hear Res 130:171–188.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Clark GM, Black RC (1983) Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results. Acta Otolaryngol (Stockh) 399:19–31.

    CAS  Google Scholar 

  • Shepherd RK, Hatsushika S, Clark GM (1993) Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res 66:108–120.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Hardie NA, Baxi JH (2001) Electrical stimulation of the auditory nerve: single neuron strength-duration functions in deafened animals. Ann Biomed Eng 29:195–201.

    PubMed  CAS  Google Scholar 

  • Smith DW, Finley CC, van den Honert C, Olszyk VB, Konrad KEM (1994) Behavioral and electrophysiological responses to electrical stimulation in the cat absolute threshold. Hear Res 81:1–10.

    PubMed  CAS  Google Scholar 

  • Smith L, Simmons FB (1983) Estimating eighth nerve survival by electrical stimulation. Ann Otol Rhinol Laryngol 92:19–23.

    PubMed  CAS  Google Scholar 

  • Smith RL, Brachman ML (1982) Adaptation in auditory-nerve fibers: a revised model. Biol Cybernet 44:107–120.

    CAS  Google Scholar 

  • Snyder RL, Rebscher SJ, Cao KL, Leake PA, Kelly K (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I. Expansion of central representation. Hear Res 50:7–33.

    PubMed  CAS  Google Scholar 

  • Snyder RL, Sinex DG, McGee JD, Walsh EW (2000) Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neurons. Hear Res 147:200–220.

    PubMed  CAS  Google Scholar 

  • Spelman FA, Pfingst BE, Clopton BM, Jolly CN, Rodenhiser KL (1995) Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements. Ann Otol Rhinol Laryngol 166:131–136.

    CAS  Google Scholar 

  • Spoendlin H (1972) Innervation densities of the cochlea Acta Otolaryng 73:235–248.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1975) Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 79:266–275.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1984) Factors inducing retrograde degeneration in the auditory nerve. Ann Otol Rhinol Laryngol Suppl 112:76–82.

    PubMed  CAS  Google Scholar 

  • Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 43:25–38.

    PubMed  CAS  Google Scholar 

  • Stainsby TH, McDermott HJ, McKay CM, Clark GM (1997) Preliminary results on spectral shape perception and discrimination of musical sounds by normal hearing subjects and cochlear implantees. Proceedings of the International Computer Music Conference, Thessaloniki, Hellas.

    Google Scholar 

  • Starr A, Brackmann DE (1979) Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Ann Otol Rhinol Laryngol 88:550–556.

    PubMed  CAS  Google Scholar 

  • Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 199:741–753.

    Google Scholar 

  • Steel KP, Bock GR (1984) Electrically evoked responses in animals with progressive spiral ganglion cell degeneration. Hear Res 15:59–67.

    PubMed  CAS  Google Scholar 

  • Strelioff D (1973) A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am 54:620–629.

    PubMed  CAS  Google Scholar 

  • Stypulkowski PH, van den Honert C (1984) Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res 14:225–243.

    PubMed  Google Scholar 

  • Stypulkowski PH, van den Honert C, Kvistad SD (1986) Electrophysiologic evaluation of the cochlear implant patient. Otolaryngol Clin North Am 19(2):249–257.

    PubMed  CAS  Google Scholar 

  • Suesserman MF, Spelman FA (1993) Lumped-parameter model for in vivo cochlear stimulation. IEEE Trans Biomed Eng 40:237–245.

    PubMed  CAS  Google Scholar 

  • Tasaki I (1955) New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Physiol 181:639–650.

    PubMed  CAS  Google Scholar 

  • Terayuma Y, Kaneko K, Tanaka K, Kawamoto K (1979) Ultrastructural changes of the nerve elements following disruption of the organ of Corti. II. Nerve elements outside the organ of Corti. Acta Otolaryngol 88:27–36.

    Google Scholar 

  • Thomsen E (1966) The ultrastructure of the spiral ganglion in the guinea pig. Acta Otolaryngol (Stockh) Suppl 224:442–448.

    Google Scholar 

  • Turner C, Gantz B (2001) Combining acoustic and electric hearing for patients with high frequency hearing loss. (Abstract) Conference on Implantable Auditory Prostheses, Pacific Grove, CA.

    Google Scholar 

  • Tyler RS, Tye-Murray N (1991) Cochlear implant signal processing strategies and patient perception of speech and environmental sounds. In: Cooper H, ed. Cochlear Implants. London: Whurr Publishers, pp. 58–83.

    Google Scholar 

  • van den Honert C, Mortimer JT (1979) The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng 7:117–125.

    PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1984) Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res 14:225–243.

    PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1986) Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans. Hear Res 21:109–126.

    PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1987a) Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hear Res 29:195–206.

    PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1987b) Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear Res 29:207–222.

    PubMed  Google Scholar 

  • van den Honert C, Finley CC, Xue S (1997) Microstimulation of auditory nerve for estimating cochlear place of single fibers in a deaf ear. Hear Res 113:140–154.

    PubMed  Google Scholar 

  • Verveen AA (1961) Fluctuation in Excitability. Amsterdam: Drukkerjj Holland NV.

    Google Scholar 

  • Vischer M, Haenggeli A, Zhang J, Pelizzone M, Hausler R, Rouiller EM (1997) Effect of high-frequency electrical stimulation of the auditory nerve in an animal model of cochlear implants. Am J Otol 18:S27—S29.

    PubMed  Google Scholar 

  • von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, et al. (1999) Electric-acoustic stim-ulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 61:334–340.

    Google Scholar 

  • Walsh SM, Leake-Jones PA (1982) Chronic electrical stimulation of auditory nerve in cat: physiological and histological results. Hear Res 7:281–304.

    PubMed  CAS  Google Scholar 

  • Warman EN, Grill WM, Durang D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng 39:1244–1254.

    PubMed  CAS  Google Scholar 

  • White MW (1984) Psychophysical and neurophysiological considerations in the design of a cochlear prosthesis. Audiol Ital 1:77–117.

    Google Scholar 

  • Wilson BS, Finley CC, Zerbi M, Lawson DT (1994) Speech processors for auditory prostheses. Seventh quarterly progress report, NIH contract N01-DC-2-2401.

    Google Scholar 

  • Wilson BS, Finley CC, Zerbi M, Lawson DT (1995) Speech processors for auditory prostheses. Eleventh quarterly progress report, NIH contract N01–2–2401, Center for Auditory Prosthesis Research.

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Zerbi M (1997a) Temporal representations with cochlear implants. Am J Otol 18:S30—S34.

    PubMed  Google Scholar 

  • Wilson BS, Zerbi M, Finley CC, Lawson DT, van den Honert C (1997b) Speech processors for auditory prostheses. Seventh quarterly progress report, NIH contract N01-DC-5-2103.

    Google Scholar 

  • Xu J, Shepherd RK, Millard RE, Clark GM (1997) Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histological study. Hear Res 105:1–29.

    PubMed  CAS  Google Scholar 

  • Yamane H, Marsh RR, Potsic WP (1981) Brain stem response evoked by electrical stimulation of the round window of the guinea pig. Otolaryngol Head Neck Surg 89:117–124.

    PubMed  CAS  Google Scholar 

  • Yates GK, Johnstone BM, Patuzzi RB, Robertson D (1992) Mechanical preprocessing in the mammalian cochlea. Trends Neurosci 15:57–61.

    PubMed  CAS  Google Scholar 

  • Zeng FG, Galvin JJ 3rd (1999) Amplitude mapping and phoneme recognition in cochlear implant listeners. Ear Hear 20:60–74.

    PubMed  CAS  Google Scholar 

  • Zeng FG, Oba S, Garde S, Sininger Y, Starr A (1999) Temporal and speech processing deficits in auditory neuropathy. Neuroreport 10:3429–3435.

    CAS  Google Scholar 

  • Zeng FG, Fu QJ, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255.

    PubMed  CAS  Google Scholar 

  • Zeng FG, Liu S, Kong YY, Starr A, Michalewski H, Shallop J (2002) Treatment of auditory neuropathy: cochlear implants or hearing aids? Paper presented at the International Hearing Aid Conference, Lake Tahoe, CA.

    Google Scholar 

  • Zhou R, Abbas PJ, Assouline JG (1995) Electrically evoked auditory brainstem response in peripherally myelin-deficient mice. Hear Res 88:98–106.

    PubMed  CAS  Google Scholar 

  • Zierhofer CM (2001) Analysis of a linear model for electrical stimulation of axons— critical remarks on the “activating function concept”. IEEE Trans Biomed Eng 48:173–184.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abbas, P.J., Miller, C.A. (2004). Biophysics and Physiology. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics