Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

The auditory prosthesis is perhaps the most successful neural prosthesis that uses electric stimulation to enhance or restore human neural, sensory, and motor function. Although a visual prosthesis is still in an early experimental stage, auditory prostheses have been used successfully to partially restore hearing in more than 60,000 hearing-impaired people worldwide. The auditory prostheses range from early single-electrode to modern multiple-electrode cochlear implants that bypass the damaged cochlea and stimulate the auditory nerve with electric currents. They also include specifically designed short electrodes and signal processing schemes that can be used to stimulate the auditory nerve while preserving the residual lowfrequency hearing for optimally combined acoustic and electric hearing. Furthermore, the auditory prostheses may stimulate the auditory brainstem or cortex in patients whose auditory nerve is not accessible because of, for example, acoustic tumors. This volume focuses on cochlear implants, but also discusses the design principles and performance data for other types of auditory prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreev AM, Gersuni GV, Volokhov AA (1935) On the electrical excitability of the human ear: on the effect of alternating currents on the affected auditory apparatus. J Physiol USSR 18:250–265.

    Google Scholar 

  • Bilger RC (1977) Psychoacoustic evaluation of present prostheses. Arch Otorhinolaryngol 86:92–104.

    CAS  Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM, Wouters J (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    Article  PubMed  Google Scholar 

  • Djourno A, Eyries C (1957) Prosthese auditive par excitation electique a distance du nerf sensorial a l’aide d’un bobinage inclus a demeure. Presse Med 35:14–17.

    Google Scholar 

  • Dorman M, Loizou P (1997) Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J Acoust Soc Am 102:2403–2411.

    Article  PubMed  CAS  Google Scholar 

  • Doyle JH, Doyal JB, Turnbull FM (1964) Electrical stimulation of the eighth cranial nerve. Arch Otolaryngol 80:388–391.

    Article  PubMed  CAS  Google Scholar 

  • Eddington DK, Dobelle WH, Brackmann DE, Mladejovsky MG, Parkin JL (1978) Auditory prostheses research with multiple channel intracochlear stimulation in man. Arch Otorhinolaryngol 87:1–39.

    CAS  Google Scholar 

  • Fishman KE, Shannon RV, Slattery WH (1997) Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J Speech Lang Hear Res 40:1201–1215.

    PubMed  CAS  Google Scholar 

  • Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparisons of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163.

    Article  PubMed  CAS  Google Scholar 

  • Fu QJ, Shannon RV, Galvin III JJ (2001) Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. J Acoust Soc Am 112:1664–1674.

    Article  Google Scholar 

  • Garnham C, O’Driscoll M, Ramsden R, Saeed S (2002) Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear Hear 23:540–552.

    Article  PubMed  Google Scholar 

  • Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS (2001) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663.

    Article  PubMed  CAS  Google Scholar 

  • House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82:504–517.

    PubMed  CAS  Google Scholar 

  • Jones RC, Stevens SS, Lurie MH (1940) Three mechanisms of hearing by electrical stimulation. J Acoust Soc Am 12:281–290.

    Article  Google Scholar 

  • Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730.

    PubMed  CAS  Google Scholar 

  • Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733.

    Article  PubMed  CAS  Google Scholar 

  • Lee DS, Lee JS, Oh SH, Kim SK, et al. (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Michelson RP, Pettit CR, Schindler RA, Reid M (1973) Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann Otol Rhinol Laryngol 82:486–503.

    PubMed  CAS  Google Scholar 

  • Michelson RP (1971) Electrical stimulation of the human cochlea. A preliminary report. Arch Otolaryngol 93:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Nie KB, Stickney GS, Zeng FG (2003) Independent Contributions of amplitude Modulation and frequency modulation to auditory perception: I. Consonant, vowel and sentence recognition. Abstract of the 26th annual midwinter research meeting 213.

    Google Scholar 

  • Pfingst BE, Zwolan TA, Holloway LA (1997) Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear Res 112:247–260.

    Article  PubMed  CAS  Google Scholar 

  • Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda A (1996) Auditory system plasticity in children after long periods of complete deafness. Neuroreport 8:61–65.

    CAS  Google Scholar 

  • Rauschecker JP, Shannon RV (2002) Sending sound to the brain. Science 295: 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  • Seyle K, Brown CJ (2002) Speech perception using maps based on neurla response telemetry measures. Ear Hear 23(1 suppl):72S-79S.

    Article  PubMed  Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:532–539.

    Article  PubMed  Google Scholar 

  • Simmons FB (1966) Electrical stimulation of the auditory nerve in man. Arch Otolaryngol 84:2–54.

    Article  PubMed  CAS  Google Scholar 

  • Simmons FB (1969) Cochlear implants. Arch Otolaryngol 89:61–69.

    Article  PubMed  CAS  Google Scholar 

  • Simmons FB, Glattke TJ (1972) Comparison of electrical and acoustical stimulation of the cat ear. Ann Otol Rhinol Laryngol 81:731–737.

    PubMed  CAS  Google Scholar 

  • Simmons FB, Epley JM, Lummis RC, Guttman N, et al. (1965) Auditory nerve: electrical stimulation in man. Science 148:104–106.

    Article  PubMed  CAS  Google Scholar 

  • Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 119:741–753.

    Article  PubMed  Google Scholar 

  • Stevens SS (1937) On hearing by electrical stimulation. J Acoust Soc Am 8:191–195.

    Article  Google Scholar 

  • Stevens SS, Jones RC (1939) The mechanism of hearing by electrical stimulation. J Acoust Soc Am 10:261–269.

    Article  Google Scholar 

  • Svirsky MA, Robbins AM, Kirk KI, Pisoni DB, Miyamoto RT (2000) Language development in profoundly deaf children with cochlear implants. Psychol Sci 11:153–158.

    Article  PubMed  CAS  Google Scholar 

  • Tong YC, Dowell RC, Blamey PJ, Clark GM (1983) Two-component hearing sensations produced by two-electrode stimulation in the cochlea of a deaf patient. Science 219:993–994.

    Article  PubMed  CAS  Google Scholar 

  • Volta A (1800) On the electricity excited by mere contact of conducting substances of different kinds. R Soc Philos Trans 90:403–431.

    Article  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG (2002) Temporal pitch in electric hearing. Hear Res 174:101–106.

    Article  PubMed  Google Scholar 

  • Zeng FG, Shannon RV (1994) Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566.

    Article  PubMed  CAS  Google Scholar 

  • Zwolan TA, Kileny PR, Ashbaugh C, Telian SA (1996) Patient performance with the Cochlear Corporation “20 + 2” implant: bipolar versus monopolar activation. Am J Otol 17:717–723.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeng, FG. (2004). Auditory Prostheses: Past, Present, and Future. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics