Skip to main content

Methods of Nanoindentation Testing

  • Chapter
Book cover Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In the previous chapters, the indentation process has been implicitly assumed to be quasi static, and no time-dependent or rate effects were considered. In this chapter, the basic theory underlying various dynamic modes of testing is presented. Techniques such as oscillatory motion, impact, and scratch testing are covered in sufficient detail to provide an understanding for the interpretation of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.N. Lucas, W.C. Oliver, and J.E. Swindeman, “The dynamics of frequency specific, depth sensing indentation testing,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 3–14.

    Article  CAS  Google Scholar 

  2. J.-L. Loubet, B.N. Lucas, and W.C. Oliver, in NIST Special Publication 896, Conference Proceedings: International Workshop on Instrumented Indentation, eds. D.T. Smith (NIST) 1995, pp. 31-34.

    Google Scholar 

  3. S.A. Syed Asif, R.J. Colton, and K.J. Wahl, “Nanoscale surface mechanical property measurements: Force modulation techniques applied to nanoindentation,” in Interfacial properties on the submicron scale, J. Frommer and R. Overney, eds. ACS Books, Washington, DC, 2001, pp. 189–215.

    Google Scholar 

  4. S.A. Syed Asif, K.J. Wahl, and R.J. Colton, The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces,” J. Mater. Res. 15 2, 2000, pp. 546–553.

    Article  Google Scholar 

  5. N.A. Burnham, S.P. Baker, and H.M. Pollock, “A model for mechanical properties of nanoprobes,” J. Mater. Res. 15 9, 2000, pp. 2006–2014.

    Article  CAS  Google Scholar 

  6. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” J. Mater. Res. 3 5, 1988, 931–942.

    Article  Google Scholar 

  7. J.L. Hay, M.E. O’Hern, and W.C. Oliver, “The importance of contact radius for substrate-independent property measurement of thin films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 27–32.

    Article  CAS  Google Scholar 

  8. M.G.D. El-Sherbiney and J. Hailing, “The Herztian contact of surfaces covered with metallic films,” Wear, 40, 1976, pp. 325–337.

    Article  Google Scholar 

  9. J.A. Ogilvy, “A parametric elastic model for indentation testing of thin films,” J. Phys. D: Appl. Phys. 26, 1993, pp. 2123–2131.

    Article  Google Scholar 

  10. R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Structures, 23 12, 1987, pp. 1657–1664.

    Article  Google Scholar 

  11. M.F. Doerner and W.D. Nix, “A method of interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 14, 1986, pp. 601–609.

    Article  Google Scholar 

  12. H. Gao, C-H Chiu, and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials,” Int. J. Solids Structures, 29 20, 1992, pp. 2471–2492.

    Article  Google Scholar 

  13. N. Schwarzer, M. Whittling, M. Swain, and F. Richter, “The analytical solution of the contact problem of spherical indenters on layered materials: Application for the investigation of TiN films on silicon,” Thin Solid Films, 270 1-2, 1995, pp. 371–375.

    Article  CAS  Google Scholar 

  14. N. Schwarzer, “Coating design due to analytical modelling of mechanical contact problems on multilayer systems,” Surf. Coat. Technol. 133, 2000, pp. 397–402.

    Article  Google Scholar 

  15. H. Buckle, in J.W. Westbrook and H. Conrad, eds. The Science of Hardness Testing and its Applications, American Society for Metals, Metals Park, OH, 1973, pp. 453-491.

    Google Scholar 

  16. B. Jonsson and S. Hogmark, “Hardness measurements of thin films,” Thin Solid Films, 114, 1984, pp. 257–269.

    Article  Google Scholar 

  17. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings I: Modelling of hardness behaviour,” Thin Solid Films, 148, 1987, pp. 41–50.

    Article  CAS  Google Scholar 

  18. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings II: Experimental studies and interpretation of hardness,” Thin Solid Films, 148, 1987, pp. 51–65.

    Article  CAS  Google Scholar 

  19. A.K. Bhattacharya and W.D. Nix, “Finite element simulation of indentation experiments,” Int. J. Solids Structures, 24 12, 1988, pp. 1287–1298.

    Article  Google Scholar 

  20. D. Stone, W.R. LaFontaine, P. Alexopolous, T.-W. Wu, and Che-Yu Li, “An investigation of hardness and adhesion of sputter-deposited aluminium on silicon by utilizing a continuous indentation test,” J. Mater. Res. 3 1, 1988, pp. 141–147.

    Article  CAS  Google Scholar 

  21. G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. A9, 1909, pp. 172–175.

    Google Scholar 

  22. D.B. Marshall and A.G. Evans, “Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination,” J. Appl. Phys. 56 10, 1984, pp. 2632–2638.

    Article  CAS  Google Scholar 

  23. M.V. Swain and J. Mencik, “Mechanical property characterization of thin films using spherical tipped indenters,” Thin Solid Films, 253, 1994, pp. 204–211.

    Article  CAS  Google Scholar 

  24. A.J. Whitehead and T.F. Page, “Nanoindentation studies of thin film coated systems,” Thin Solid Films, 220, 1992, pp. 277–283.

    Article  CAS  Google Scholar 

  25. M.D. Kriese, N.R. Moody, and W.W. Gerberich, “Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates,” Acta Mater. 46, 1998, pp. 6623–6630.

    Article  CAS  Google Scholar 

  26. A. A. Volinsky, N.R. Moody, and W.W. Gerberich, “Superlayer residual stress effect on the indentation adhesion measurements,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 383–388.

    Article  CAS  Google Scholar 

  27. J. Sekler, P.A. Steinmann, and H.E. Hintermann, “The scratch test: Different critical load determination techniques,” Surface and Coatings Technology, 36, 1988, pp. 519–529.

    Article  CAS  Google Scholar 

  28. N. Gane and J. Skinner, “The friction and scratch deformation of metals on a micro scale,” Wear, 24, 1973, pp. 207–217.

    Article  CAS  Google Scholar 

  29. P.A. Steinmann, Y. Tardy, and H.E. Hintermann, “Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load,” Thin Solid Films, 154, 1987, pp. 333–349.

    Article  CAS  Google Scholar 

  30. V.D. Jardret and W.C. Oliver, “Viscoelastic behaviour of polymer films during scratch test: A quantitative analysis,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 251–256.

    Article  CAS  Google Scholar 

  31. S. Enders, P. Grau, and G. Berg, “Mechanical characterization of surfaces by nanotribological measurements of sliding and abrasive terms,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 531–536.

    Article  CAS  Google Scholar 

  32. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, 1950.

    Google Scholar 

  33. M. Shiwa, E.R. Weppelmann, D. Munz, M.V. Swain, and T. Kishi, “Acoustic emission and precision force-displacement observations on pointed and spherical indentation of silicon and TiN film on silicon,” J. Mat. Sci. 31, 1996, 5985–5991.

    Article  CAS  Google Scholar 

  34. D. Tabor, Hardness of Metals, Clarendon Press, Oxford, 1951.

    Google Scholar 

  35. R. Hill, B. Storåkers, and A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. Lond. A423, 1989, pp. 301–330.

    Google Scholar 

  36. M.M. Chaudhri, “Subsurface deformation patterns around indentation in work-hardened mild steel,” Phil. Mag. Lett. 67 2, 1993, pp. 107–115.

    Article  CAS  Google Scholar 

  37. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power-law creeping solid,” Proc. R. Soc. Lond. A441, 1993, pp. 97–124.

    Google Scholar 

  38. B. Storåkers and P.-L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994, pp. 307–332.

    Article  Google Scholar 

  39. M.J. Mayo and W.D. Nix, “A microindentation study of superplasticity in Pb, Sn, and Sn-38wt%Pb,” Acta Metall. 36 8, 1988, pp. 2183–2192.

    Article  CAS  Google Scholar 

  40. N.R. Moody, A. Strojny, D. Medlin, S. Guthrie, and W.W. Gerberich, “Test rate effects on the mechanical behaviour of thin aluminium films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 281–286.

    Article  CAS  Google Scholar 

  41. Y.-T. Cheng and C.-M. Cheng, “What is indentation hardness?,” Surf. Coat. Tech. 133-134, 2000, pp. 417–424.

    Article  CAS  Google Scholar 

  42. W.B. Li and R. Warren, “A model for nano-indentation creep,” Acta. Metall. Mater. 41 10, 1993, pp. 3065–3069.

    Article  CAS  Google Scholar 

  43. P.M. Sargent and M.F. Ashby, “Indentation creep,” Mat. Sci. and Tech. 8, 1992, pp. 594–601.

    Article  CAS  Google Scholar 

  44. L. Cheng, L.E. Scriven, and W.W. Gerberich, “Viscoelastic analysis of micro-and nanoindentation,” Mat. Res. Symp. Proc. 522, 1998, pp. 193–198.

    Article  CAS  Google Scholar 

  45. J.R.M. Radok, “Viscoelastic stress analysis,” Q. Appl. Math. 15, 1957, pp. 198–202.

    Google Scholar 

  46. A. Strojny and W.W. Gerberich, “Experimental analysis of viscoelasic behaviour in nanoindentation,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 159–164.

    Article  CAS  Google Scholar 

  47. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer-Verlag, New York, 2000.

    Google Scholar 

  48. S. Palmqvist, “A method to determine the toughness of brittle materials, especially hard materials,” Jernkontorets Ann. 141, 1957, pp. 303–307.

    Google Scholar 

  49. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63 1980, pp. 574–581.

    Article  CAS  Google Scholar 

  50. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I Direct crack measurements,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533–538.

    Article  CAS  Google Scholar 

  51. M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. Sci. Lett. 6, 1987, pp. 897–900.

    Article  CAS  Google Scholar 

  52. F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. Frac. Mechs. 8, 1976, pp. 447–448.

    Article  Google Scholar 

  53. R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, pp. 3299–3304.

    Article  CAS  Google Scholar 

  54. E.R. Petty and H. O’Neill, “Hot hardness values in relation to the physical properties of metals,” Metallurgies 63, 1961, pp. 25–30.

    CAS  Google Scholar 

  55. A.G. Atkins and D. Tabor, “Mutual indentation hardness apparatus for use at very high temperatures,” Brit. J. Appl. Phys. 16, 1965, pp. 1015–1021.

    Article  Google Scholar 

  56. A.G. Atkins and D. Tabor, “Hardness and deformation properties of solids at very high temperatures,” Proc. R. Soc. Lond. A292, 1966, pp. 441–459.

    Google Scholar 

  57. A.G. Atkins and D. Tabor, “The plastic deformation of crossed cylinders and wedges,” J. Inst. Metals, 94, 1966, pp. 107–115.

    Google Scholar 

  58. E.A. Payzant, H.W. King, S. Das Gupta, and J.K. Jacobs, “Hot hardness of ceramic cutting tools using depth of penetration measurements,” in Development and Applications of Ceramics and New Metal Alloys, H. Mostaghaci and R.A.L. Drew, eds. Canadian Institute of Mining and Metallurgy, Montreal, 1993.

    Google Scholar 

  59. T.R.G. Kutty, C. Ganguly, and D.H. Sastry, “Development of creep curves frm hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.

    Article  CAS  Google Scholar 

  60. S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J. Adhesion, 67, 1998, pp. 153–165.

    Article  CAS  Google Scholar 

  61. K. Shinohara, K. Yasuda, M. Yamada, and C. Kinoshita, “Universal method for evaluating work-hardening exponent of metals using ultra-microhardness tests,” Acta. Metall. Mater. 42 11, 1994, pp. 3909–3915.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2002). Methods of Nanoindentation Testing. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22462-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22462-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-0515-4

  • Online ISBN: 978-0-387-22462-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics