Skip to main content

Analysis of Nanoindentation Test Data

  • Chapter
  • 618 Accesses

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

As described in Chapter 2, estimations of both elastic modulus and hardness of the specimen material in a nanoindentation test are obtained from load versus penetration measurements. Rather than a direct measurement of the size of residual impressions, contact areas are instead calculated from depth measurements together with a knowledge of the actual shape of the indenter. For this reason, nanoindentation testing is sometimes referred to as depth-sensing indentation testing. In this chapter, methods of the analysis of load-displacement data that are used to compute hardness and modulus of test specimens are presented in detail. It is an appropriate introduction to first consider the case of a cylindrical punch indenter — even though this type of indenter is rarely used for this type of testing, its response illustrates and introduces the theory for the more complicated cases of spherical and pyramidal indenters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer-Verlag, New York, 2000.

    Google Scholar 

  2. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and the elastic modulus during indentation,” J. Mater. Res. 7 3, 1992, pp. 613–617.

    Article  CAS  Google Scholar 

  3. M.F. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1 4, 1986, pp. 601–609.

    Article  Google Scholar 

  4. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 4, 1992, pp. 1564–1583.

    Article  CAS  Google Scholar 

  5. J.S. Field and M.V. Swain, “A simple predictive model for spherical indentation,” J. Mater. Res. 8 2, 1993, pp. 297–306.

    Article  CAS  Google Scholar 

  6. H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92 1881, pp. 156–171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co., London, 1896, Ch. 5.

    Google Scholar 

  7. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and the elastic modulus during indentation,” J. Mater. Res. 7 3, 1992, pp. 613–617.

    Article  CAS  Google Scholar 

  8. E.S. Berkovich, “Three-faceted diamond pyramid for micro-hardness testing,” Ind. Diamond Rev. 11 127,1951, pp. 129-133.

    Google Scholar 

  9. I.N. Sneddon, “Boussinesq’s problem for a rigid cone,” Proc. Cambridge Philos. Soc. 44, 1948, pp. 492–507.

    Article  Google Scholar 

  10. R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Structures, 23 12, 1987, pp. 1657–1664.

    Article  Google Scholar 

  11. D.B. Marshall and B.R. Lawn, “Indentation of Brittle Materials,” Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, P.J. Blau and B.R. Lawn, eds. American Society for Testing and Materials, Philadelphia, 1986, pp. 26–46.

    Google Scholar 

  12. D.B. Marshall, T. Noma, and A.G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements,” J. Am. Ce-ram. Soc. 65, 1980, pp. C175–C176.

    Article  Google Scholar 

  13. L. Riester, T.J. Bell, and A.C. Fischer-Cripps, “Analysis of depth-sensing indentation tests with a Knoop indenter,” J. Mater. Res. 16 6, 2001, pp. 1660–1667.

    Article  CAS  Google Scholar 

  14. M.Kh. Shorshorov, S.I. Bulychev, and V.O. Alekhin, “Work of plastic and elastic deformation during indenter indentation,” Sov. Phys. Dokl. 26 8, 1981, pp. 769–771.

    Google Scholar 

  15. M. Sakai, “Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials,” Acta. Metal. Mater. 41 6, 1993, pp. 1751–1758.

    Article  CAS  Google Scholar 

  16. B.N. Lucas, W.C. Oliver, and J.E. Swindeman, “The dynamics of frequency specific, depth sensing indentation testing,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 3–14.

    Article  CAS  Google Scholar 

  17. D. Lorenz, W. Fränzel, M. Einax, P. Grau, and G. Berg, “Determination of the elastic properties of glasses and polymers exploiting the resonant characteristic of depth-sensing indentation tests,” J. Mater. Res. 16 6, 2001, pp. 1776–1783.

    Article  CAS  Google Scholar 

  18. D.L. Joslin and W.C. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests,” J. Mater. Res. 5 1, 1990, pp. 123–126.

    Article  CAS  Google Scholar 

  19. S.V. Hainsworth, H.W. Chandler, and T.F. Page, “Analysis of nanoindentation load-displacement loading curves,” J. Mater. Res. 11 8, 1996, pp. 1987–1995.

    Article  CAS  Google Scholar 

  20. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopolous, and S. Suresh, “Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction,” Scripta Mater. 42, 2000, pp. 833–839.

    Article  CAS  Google Scholar 

  21. W.W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, “Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations,” J. Mater. Res. 13 2, 1998, pp. 421–439.

    Article  CAS  Google Scholar 

  22. T.F. Page, G.M. Pharr, J.C. Hay, W.C. Oliver, B.N. Lucas, E. Herbert, and L. Riester, “Nanoindentation characterization of coated systems: P:S2 — a new approach using the continuous stiffness technique,” Mat. Res. Symp. Proc. 522, 1998, pp. 53–64.

    Article  CAS  Google Scholar 

  23. D.S. Stone, “Elastic rebound between an indenter and a layered specimen: Part 1. Model,” J. Mater. Res. 13 11, 1998, pp. 3207–3213.

    Article  CAS  Google Scholar 

  24. K.B. Yoder, D.S. Stone, R.A. Hoffman, and J.C. Lin, “Elastic rebound between an indenter and a layered specimen: Part II. Using contact stiffness to help ensure reliability of nanoindentation measurements,” J. Mater. Res. 13 11, 1998, pp. 3214–3220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2002). Analysis of Nanoindentation Test Data. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22462-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22462-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-0515-4

  • Online ISBN: 978-0-387-22462-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics