Skip to main content

Contact Mechanics

  • Chapter
Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

There has been considerable recent interest in the mechanical characterisation of thin film systems and small volumes of material using depth-sensing indentation tests with either spherical or pyramidal indenters. Usually, the principal goal of such testing is to extract elastic modulus and hardness of the specimen material from experimental readings of indenter load and depth of penetration. These readings give an indirect measure of the area of contact at full load, from which the mean contact pressure, and thus hardness, may be estimated. The test procedure, for both spheres and pyramidal indenters, usually involves an elastic—plastic loading sequence followed by an unloading. The validity of the results for hardness and modulus depends largely upon the analysis procedure used to process the raw data. Such procedures are concerned not only with the extraction of modulus and hardness, but also with correcting the raw data for various systematic errors that have been identified for this type of testing. The forces involved are usually in the millinewton (10−3 N) range and are measured with a resolution of a few nanonewtons (10−9 N). The depths of penetration are on the order of microns with a resolution of less than a nanometre (10−9 m). In this chapter, we consider the general principles of elastic and elastic—plastic contact and how these relate to indentations at the nanometre scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 1881, pp. 156–171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co., London, 1896, Ch. 5.

    Google Scholar 

  2. H. Hertz, “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.

    Google Scholar 

  3. A.C. Fischer-Cripps, “The use of combined elastic modulus in the analysis of depth sensing indentation data,” J. Mater. Res., 16 11, 2001, pp. 3050–3052.

    Article  CAS  Google Scholar 

  4. I.N. Sneddon, “Boussinesq’s problem for a rigid cone,” Proc. Cambridge Philos. Soc. 44, 1948, pp. 492–507.

    Article  Google Scholar 

  5. J.R. Barber and D.A. Billings, “An approximate solution for the contact area and elastic compliance of a smooth punch of arbitrary shape,” Int. J. Mech. Sci. 32 12, 1990, pp. 991–997.

    Article  Google Scholar 

  6. G.G. Bilodeau, “Regular pyramid punch problem,” J. App. Mech. 59, 1992, pp. 519–523.

    Article  Google Scholar 

  7. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer-Verlag, New York, 2000.

    Google Scholar 

  8. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.

    Google Scholar 

  9. F. Auerbach, “Absolute hardness,” Ann. Phys. Chem. (Leipzig) 43, 1891, pp.61–100. Translated by C. Barus, Annual Report of the Board of Regents of the Smithsonian Institution, July 1, 1890–June 30 1891, reproduced in “Miscellaneous documents of the House of Representatives for the First Session of the Fifty-Second Congress,” Government Printing Office, Washington, D.C., 43, 1891–1892, pp.207-236.

    Article  Google Scholar 

  10. E. Meyer, “Untersuchungen über Harteprufung und Harte,” Phys. Z. 9, 1908, pp. 66–74.

    CAS  Google Scholar 

  11. S.L. Hoyt, “The ball indentation hardness test,” Trans. Am. Soc. Steel Treat. 6, 1924, pp. 396–420.

    CAS  Google Scholar 

  12. M.C. Shaw, “The fundamental basis of the hardness test,” in The Science of Hardness Testing and its Research Applications, J.H. Westbrook and H. Conrad, Eds. American Society for Metals, Cleveland, OH, 1973, pp. 1–15.

    Google Scholar 

  13. M.V. Swain and J.T. Hagan, “Indentation plasticity and the ensuing fracture of glass,” J. Phys. D: Appl. Phys. 9, 1976, pp. 2201–2214.

    Article  CAS  Google Scholar 

  14. M.T. Huber, “Contact of solid elastic bodies,” Ann. D. Physik, 14 1, 1904, pp. 153–163.

    Article  Google Scholar 

  15. A.C. Fischer-Cripps, “Elastic-plastic response of materials loaded with a spherical indenter,” J. Mater. Sci. 32 3, 1997, pp. 727–736.

    Article  CAS  Google Scholar 

  16. S.Dj. Mesarovic and N. A. Fleck, “Spherical indentation of elastic-plastic solids,” Proc. R. Soc. Lond. A455, 1999, pp. 2707–2728.

    Google Scholar 

  17. R. Hill, E.H. Lee and S.J. Tupper, “Theory of wedge-indentation of ductile metals,” Proc. R. Soc. London, A188, 1947, pp. 273–289.

    Google Scholar 

  18. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.

    Google Scholar 

  19. D.M. Marsh, “Plastic flow in glass,” Proc. R. Soc. London, A279, 1964, pp. 420–435.

    Google Scholar 

  20. L.E. Samuels and T.O. Mulhearn, “An experimental investigation of the deformed zone associated with indentation hardness impressions,” J. Mech. Phys. Solids, 5, 1957, pp. 125–134.

    Article  Google Scholar 

  21. T.O. Mulhearn, “The deformation of metals by Vickers-type pyramidal indenters,” J. Mech. Phys. Solids, 7, 1959, pp. 85–96.

    Article  Google Scholar 

  22. K.L. Johnson, “The correlation of indentation experiments,” J. Mech. Phys. Sol. 18, 1970, pp. 115–126.

    Article  Google Scholar 

  23. M.C. Shaw and D.J. DeSalvo, “A new approach to plasticity and its application to blunt two dimension indenters,” J. Eng. Ind. Trans. ASME, 92, 1970, pp. 469–79.

    Article  Google Scholar 

  24. M.C. Shaw and D.J. DeSalvo, “On the plastic flow beneath a blunt axisymmetric indenter,” J. Eng. Ind. Trans. ASME 92, 1970, pp. 480–494.

    Article  Google Scholar 

  25. C. Hardy, C.N. Baronet, and G.V. Tordion, “The elastic-plastic indentation of a half-space by a rigid sphere,” Int. J. Numer. Methods Eng. 3, 1971, pp. 451–462.

    Article  Google Scholar 

  26. CM. Perrott, “Elastic-plastic indentation: Hardness and fracture,” Wear 45, 1977, pp. 293–309.

    Article  Google Scholar 

  27. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 1. Stresses and residual stresses,” J. Appl. Phys. 53 1, 1982, pp. 298–311.

    Article  CAS  Google Scholar 

  28. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 2. Fracture initiation,” J. Appl. Phys. 53 1, 1982, pp. 312–317.

    Article  CAS  Google Scholar 

  29. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

    Book  Google Scholar 

  30. J.B. Pethica, “Microhardness tests with penetration depths less than ion implanted layer thickness in ion implantation into metals,” Third International Conference on Modification of Surface Properties of Metals by Ion-Implantation, Manchester, England, 23-26, 1981, V. Ashworth etal. eds., Pergammon Press, Oxford, 1982, pp. 147–157.

    Google Scholar 

  31. J.S. Field, “Understanding the penetration resistance of modified surface layers,” Surface and Coatings Technology, 36, 1988, pp. 817–827.

    Article  CAS  Google Scholar 

  32. N.A. Stillwell and D. Tabor, “Elastic recovery of conical indentations,” Phys. Proc. Soc. 78 2, 1961, pp. 169–179.

    Article  Google Scholar 

  33. R.W. Armstrong and W.H. Robinson, “Combined elastic and plastic deformation behaviour from a continuous indentation hardness test,” New Zealand Journal of Science, 17, 1974, pp. 429–433.

    CAS  Google Scholar 

  34. B.R. Lawn and V.R. Howes, “Elastic recovery at hardness indentations,” J. Mat. Sci. 16, 1981, pp. 2745–2752.

    Article  CAS  Google Scholar 

  35. S.I. Bulychev, V.P. Alekhin, M. Kh. Shorshorov, and A.P. Ternorskii, “Determining Young’s modulus from the indenter penetration diagram,” Zavod. Lab. 41 9, 1975, pp. 11137–11140.

    Google Scholar 

  36. J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille, “Vicker’s indentation of magnesium oxide,” J. Tribol. 106, 1984, pp. 43–48.

    Article  CAS  Google Scholar 

  37. M.F. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 14, 1986, pp. 601–609.

    Article  Google Scholar 

  38. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 4, 1992, pp. 1564–1583.

    Article  CAS  Google Scholar 

  39. T.J. Bell, A. Bendeli, J.S. Field, M.V. Swain, and E.G. Thwaite, “The determination of surface plastic and elastic properties by ultra-micro indentation,” Metrologia, 28, 1991, pp. 463–69.

    Article  Google Scholar 

  40. J.S. Field and M.V. Swain, “A simple predictive model for spherical indentation,” J. Mater. Res. 8 2, 1993, pp. 297–306.

    Article  CAS  Google Scholar 

  41. A.C. Fischer-Cripps, “Study of analysis methods for depth-sensing indentation test data for spherical indenters,” J. Mater. Res. 16 6, 2001, pp. 1579–1584.

    Article  CAS  Google Scholar 

  42. A.G. Atkins, “Topics in indentation hardness,” Metal Science, 16, 1982, pp. 127–137.

    Article  Google Scholar 

  43. H.M. Pollock, “Nanoindentation”, ASM Handbook, Friction, Lubrication, and Wear Technology, 18, 1992, pp. 419–429.

    Google Scholar 

  44. J.L. Hay and G.M. Pharr, “Instrumented indentation testing,” ASM Handbook, Materials Testing and Evaluation, 8, 2000, pp. 232–243.

    Google Scholar 

  45. S.A. Syed, K.J. Wahl, and R.J. Colton, “Quantitative study of nanoscale contact and pre-contact mechanics using force modulation,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 471–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2002). Contact Mechanics. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22462-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22462-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-0515-4

  • Online ISBN: 978-0-387-22462-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics