Skip to main content

Immunocytochemistry and In Situ Hybridization: Their Combinations for Cytofunctional Approaches of Central and Peripheral Neurons

  • Chapter
Cellular and Molecular Methods in Neuroscience Research
  • 231 Accesses

Abstract

The birth of new concepts in chemical neurotransmission, like cotransmission, volume transmission, or neuronal versatility, frequently occurred thanks to the advances in neurocytochemichal technologies. First, the identification and in situ localization of neurotransmitters, related enzymes, and receptors greatly benefited from the development of more and more specific and sensitive cytochemical techniques. For instance, after histochemistry of acetylcholinesterase, the chemical neuroanatomy of monoamine neurons originated from histofluorescence methods. It is the development, however, of immunocytochemistry (ICC)at optic and electron microscope levels which has given an universal and versatile tool for such cartographies, first of neuropeptides, then of enzymes of neurotransmitter metabolism, and finally of the neurotransmitters themselves after the pioneering work of Steinbusch and colleagues (36) for serotonin. However these mappings,completed by that of receptors through ligand binding or ICC, does not allow, for example, the assumption that identified protein molecules are truly synthetized within sites where they are detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, V., P. Somogyi, and J.P. Bolam. 1997. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neurosci. 17:819–833.

    PubMed  CAS  Google Scholar 

  2. Bernard, V., O. Laribi, A.I. Levey, and B. Bloch. 1998. Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J. Neurosci. 18:10207–10218.

    PubMed  CAS  Google Scholar 

  3. Bobrow, M.N., T.D. Harris, K.J. Shaughnessy, and G.J. Litt. 1989. Catalyzed reporter deposition, a novel mmethod of signal amplification. Application to immunoassays. J. Immunol. Methods 125:279–285.

    Article  PubMed  CAS  Google Scholar 

  4. Brahic, M., A.H. Haase, and E. Cash. 1984. Simultaneous in situ detection of viral RNA and antigens. Proc. Natl. Acad. Sci. USA 81:5445–5448.

    Article  PubMed  CAS  Google Scholar 

  5. Broberger, C., M. Landry, H. Wong, J.N. Walsh, and T. Hökfelt. 1997. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in proopiomelanocortin and neuropeptide Y-containing neurons of the rat hypothalamic arcuate nucleus. J. Neuroendocrinol. 66:393–408.

    CAS  Google Scholar 

  6. Brudlag, D., C. Schlehuber, and J. Bonner. 1977. Properties of formaldehyde treated nucleohistone. Biochemistry 8:3214.

    Article  Google Scholar 

  7. Clayton, D.F. and A. Alvarez-Buylla. 1989. In situ hybridization using PEG-embedded tissue and riboprobes: increased cellular detail coupled with high sensitivity. J. Histochem. Cytochem. 3:389–393.

    Google Scholar 

  8. Dagerlind, A., K. Friberg, A.J. Bean, and T. H ökfelt. 1992. Sensitive messenger RNA detection using unfixed tissue: combined radioactive and non-radioactive in situ hybridization histochemistry. Histochemistry 98:39–49.

    Article  PubMed  CAS  Google Scholar 

  9. Driever, W. and C. Nusslein-Volhard. 1988. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104.

    Article  PubMed  CAS  Google Scholar 

  10. Fournier, J.G. 1994. Histologie Moléculaire. Technique and Documentation. Lavoisier, Paris.

    Google Scholar 

  11. Grino, M. and A.J. Zamora. 1998. An in situ hybridization histochemistry technique allowing simultaneous visualization by the use of confocal microscopy of three cellular mRNA species in individual neurons. J. Histochem. Cytochem. 46:753–759.

    PubMed  CAS  Google Scholar 

  12. Guitteny, A.F., P. Böhlen, and B. Bloch. 1988. Analysis of vasopressin gene expression by in situ hybridization and immunohistochemistry in semi-thin sections. J. Histochem. Cytochem. 36:1373–1378.

    PubMed  CAS  Google Scholar 

  13. Hrabovszky, E., M.E. Vrontakis, and S.L. Pertersen. 1995. Triple-labeling method combining immunocytochemistry and in situ hybridization histochemistry: demonstration of overlap between fos-immunoreactive and galanin mRNA-expressing subpopulations of luteinizing hormone-releasing hormone neurons in female rats. J. Histochem. Cytochem. 4:363–370.

    Google Scholar 

  14. Hunyady, B., K. Krempels, G. Harta, and E. Mezey. 1996. Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J. Histochem. Cytochem. 12: 1353–1362.

    Google Scholar 

  15. Ingham, P.W. 1988. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34.

    Article  PubMed  CAS  Google Scholar 

  16. Kagiyama, N., S. Fujita, M. Momiyama, H. Saito, H. Shirahama, and S.H. Hori. 1992. A fluorescent detection method for DNA, hybridization using 2-hydroxy-3 naphthoic acid-2’-phenylanilide phosphate as a subtrate for alkaline phosphatase. J. Histochem. Cytochem. 25:467–471.

    CAS  Google Scholar 

  17. Kerekes, N., M. Landry, M. Rydh-Rinder, and T. Hökfelt. 1997. The effect of NGF, BDNF and bFGF on galanin message associated peptide in cultured rat dorsal root ganglia. Brain Res. 754:131–141.

    Article  PubMed  CAS  Google Scholar 

  18. Kerekes, N., M. Landry, and T. Hökfelt. 1999. Leukemia inhibitory factor (LIF) regulates galanin/GMAP expression in cultured mouse dorsal root ganglia with a note on in situ hybridization technology. J. Neurosci. 89:1123–1134.

    Article  CAS  Google Scholar 

  19. Kerstens, H.M.J. and P.J. Poddighe. 1995. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramide. J. Histochem. Cytochem. 4:347–352.

    Google Scholar 

  20. Lan, H.Y., W. Mu, Y.Y. Ng, and D.J. Nikolic-Paterson. 1996. A simple, reliable, and sensitive method for nonradioactive in situ hybridization: use of microwave heating to improve hybridization efficiency and preserve tissue morphology. J. Histochem. Cytochem. 3:281–287.

    Google Scholar 

  21. Landry, M., A. Trembleau, R. Arai, and A. Calas. 1991. Evidence for a colocalization of OT mRNA and galanin: a study combining in situ hybridization and immunohistochemistry. Mol. Brain Res. 10:91–95.

    Article  PubMed  CAS  Google Scholar 

  22. Landry, M., D. Roche, E. Angelova, and A. Calas. 1997. Expression of galanin in gypothalamic magnocellular neurons of lactating rats. Coexistence with vasopressin and oxytocin. J. Endocrinol. 155:467–481.

    Article  PubMed  CAS  Google Scholar 

  23. Landry, M. and T. Hökfelt. 1998. Subcellular localization of preprogalanin mRNA in perikarya and axons of hypothalamo-posthypophyseal magnocellular neurons: an in situ hybridization study at the light and electron microscope level. J. Neurosci. 84:897–912.

    Article  CAS  Google Scholar 

  24. Landry, M., K. Aman, and T. Hökfelt. 1998. The galanin-R1 receptor in anterior and mid-hypothalamus: distribution and regulation. J. Comp. Neurol. 399: 321–340.

    Article  PubMed  CAS  Google Scholar 

  25. Le Moine, C. and B. Bloch. 1995. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 355:418–426.

    Article  PubMed  Google Scholar 

  26. Le Moine, C., V. Bernard, and B. Bloch. 1994. Quantitative in situ hybridization, using radioactive probes in the study of gene expression in heterocellular systems. In K.H.A. Choo (Ed.), Methods in Molecular Biology, In Situ Hybridization Protocols, Vol. 33. Humana Press, Totowa.

    Google Scholar 

  27. Martinez, A., M.J. Miller, K. Quinn, E.J. Unsworth, M. Ebina, and F. Cuttitta. 1995. Non-radioactive localization of nucleic acids by-direct in situ PCR and in situ RT-PCR in paraffin-embedded sections. J. Histochem. Cytochem. 8:739–747.

    Google Scholar 

  28. Melton, D.A. 1987. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80–82.

    Article  PubMed  CAS  Google Scholar 

  29. Morel, G., M. Berger, B. Ronsin, S. Recher, S. Ricard-Blum, H.C. Mertani, and P.E. Lobie. 1998. In situ reverse transcription-polymerase chain reaction. Applications for light and electron microscopy. J. Biol. Cell. 50:137–154.

    Article  Google Scholar 

  30. Nouel, D., M.P. Faure, J.A. St. Pierre, R. Alonso, R. Quirion, and A. Beaudet. 1997. Differential binding profile and internalization process of neurotensin via neuronal and glial receptors. J. Neurosci. 17:1795–1803.

    PubMed  CAS  Google Scholar 

  31. Pardue, M.L. 1987. In situ hybridization, p. 179. In B.D. Hames and S.J. Miggins (Eds.), Nucleic Acid Hybrydization. IRL Press, Oxford.

    Google Scholar 

  32. Prakash, N., S. Fehr, E. Mohr, and D. Richter. 1997. Dendritic localization of rat vasopressin mRNA: ultrastructural analysis and mapping of targeting elements. J. Neurosci. 9:523–532.

    CAS  Google Scholar 

  33. Racca, C., A. Gardiol, and A. Triller. 1997. Dendritic and postsynaptic localizations of glycine receptor α subunit mRNAs. J. Neurosci. 17:1691–1700.

    PubMed  CAS  Google Scholar 

  34. Schachter, G.S. 1987. Studies of neuropeptide gene expression in brain pituitary, p. 111. In K.L. Valentino, J.H. Eberwin, and J.D. Barchas (Eds.), In Situ Hybridization. Applications to Neurobiology. Oxford University Press, New-York.

    Google Scholar 

  35. Shivers, B.D., R. Harlan, D.W. Pfaff, and B.S. Schachter. 1986. Combination of immunocytochemistry and in situ hybridization in the same tissue section of rat pituitary. J. Histochem. Cytochem. 34:39–43.

    PubMed  CAS  Google Scholar 

  36. Steinbusch, H.W., A.A. Verhofstad, and H.W. Joosten. 1978. Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819.

    Article  PubMed  CAS  Google Scholar 

  37. Svenningsson, P., C. Le Moine, B. Kull, R. Sunahara, B. Bloch, and B.B. Fredholm. 1997. Cellular expression of adenosine A 2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. J. Neurosci. 4:1171–1185.

    Google Scholar 

  38. Torre, E.R. and O. Steward. 1996. Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J. Neurosci. 16:5967–5978.

    PubMed  CAS  Google Scholar 

  39. Trembleau, A. and F.E. Bloom. 1996. Spatial segregation of Gαs mRNA and vasopressin mRNA to distinct domains of the rough endoplasmic reticulum within secretory neurons of the rat hypothalamus. J. Mol. Cell. Neurosci. 7:17–28.

    Article  CAS  Google Scholar 

  40. Trembleau, A., A. Calas, and M. Fevre-Montange. 1990. Ultrastructural localization of oxytocin mRNA in the rat hypothalamus by in situ hybridization using a synthetic oligonucleotide. Mol. Brain Res. 8:37–45.

    Article  PubMed  CAS  Google Scholar 

  41. Trembleau, A., D. Roche, and A. Calas. 1993. Combination of non-radioactive in situ hybridization with immunohistochemistry: a new method allowing the simultaneous detection of two mRNAs and one antigen in the same section. J. Histochem. Cytochem. 41:489–498.

    PubMed  CAS  Google Scholar 

  42. Trembleau, A., M. Morales, and E.E. Bloom. 1996. Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. J. Neurosci. 1:113–125.

    Google Scholar 

  43. Van Gijlswijk, R.P.M., H.J.M.A.A. Zijlmans, J. Wiegant, M.N. Bobrow, T.J. Erickson, K.E. Adler, H.J. Tanke, and A.K. Raap. 1997. Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 45:375–382.

    PubMed  Google Scholar 

  44. Van Gijlswijk, R.P.M., D.J. van Gijlswijk-Janssen, A.K. Raap, M.R. Daha, and H.J. Tanke. 1996. Enzyme labelled antibody-avidin complexes, new flexible and sensitive immunochemical reagents. J. Immunol. Methods 189:117–127.

    Article  PubMed  Google Scholar 

  45. Xu, Z.-Q., T.-J. Shi, M. Landry, and T. Hökfelt. 1996. Evidence for galanin receptors in primary sensory neurons and effect of axotomy and inflammation. Neuroreport 8:237–242.

    Article  PubMed  CAS  Google Scholar 

  46. Young, W.S. III. 1989. Simultaneous use of digoxigenin and radiolabeled oligodeoxyribonucleotide probes for hybridization histochemistry. Neuropeptides 13: 271–275.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Landry, M., Calas, A. (2002). Immunocytochemistry and In Situ Hybridization: Their Combinations for Cytofunctional Approaches of Central and Peripheral Neurons. In: Merighi, A., Carmignoto, G. (eds) Cellular and Molecular Methods in Neuroscience Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22460-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22460-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95386-1

  • Online ISBN: 978-0-387-22460-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics