Skip to main content

Analysis of Gene Expression in Genetically Labeled Single Cells

  • Chapter
Cellular and Molecular Methods in Neuroscience Research

Abstract

A combination of transgenic technology and single-cell reverse transcription polymerase chain reaction (RT-PCR)has been used to study gene expression in dopaminergic amacrine (DA)cells of the mouse retina. Because there are only 900 DA cells, and they cannot be distinguished from neighboring neurons on the basis of their morphology, we labeled them with human placental alkaline phosphatase (PLAP)by introducing into the mouse genome PLAP cDNA under the control of the promoter of the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine biosynthesis. Because PLAP is an enzyme that resides on the outer surface of the cell membrane, we can identify DA cells after dissociation of the retina by immunocytochemistry in the living state. Cells are then patch clamped and harvested for single-cell RT-PCR analysis of gene expression. Here, we describe the preparation of the fluorescent antibody E6-Cy3 to specifically detect PLAP-expressing cells, methods to obtain short-term cultures of solitary neurons from mouse retinas, and techniques to detect gene expression in individual neurons. Properties and pitfalls of single-cell RT-PCR are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audinat, E., B. Lambolez, and J. Rossier. 1996. Functional and molecular analysis of glutamate-gated channels by patch-clamp and RT-PCR at the single cell level. Neurochem. Int. 28:119–136.

    Article  PubMed  CAS  Google Scholar 

  2. Banerjee, S.A., P. Hoppe, M. Brilliant, and D.M. Chikaraishi. 1992. 5’ Flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice. J. Neurosci. 12:4460–4467.

    PubMed  CAS  Google Scholar 

  3. Berger, J., A.D. Howard, L. Gerber, B.R. Cullen, and S. Udenfriend. 1987. Expression of active, membrane-bound human placental alkaline phosphatase by transfected simian cells. Proc. Natl. Acad. Sci. USA 84:4885–4889.

    Article  PubMed  CAS  Google Scholar 

  4. Bochet, P., E. Audinat, B. Lambolez, F. Crepel, J. Rossier, M. Iino, K. Tsuzuki, and S. Ozawa. 1994. Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron 12:383–388.

    Article  PubMed  CAS  Google Scholar 

  5. Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805.

    Article  PubMed  CAS  Google Scholar 

  6. Estee, J., P. Crino, and J. Eberwine. 1999. Preparation of cDNA from single cells and subcellular regions, p. 3–18. In S.M. Weissman (Ed.), Methods of Enzymology (303): cDNA Preparation and Characterization. Academic Press, San Diego.

    Google Scholar 

  7. De Groote G., P. De Waele, A. Van De Voorde, M. De Broe, and W. Fiers. 1983. Use of monoclonal antibodies to detect human placental alkaline phosphatase. Clin. Chem. 29:115–119.

    PubMed  Google Scholar 

  8. DeVries, S.H. and D.A. Baylor. 1997. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78:2048–2060.

    PubMed  CAS  Google Scholar 

  9. De Waele, P., G. De Groote, A. Van De Voorde, W Fiers, J.-D. Franssen, P. Herion, and J. Urbain. 1982. Isolation and identification of monoclonal antibodies directed against human placental alkaline phosphatase. Arch. Int. Physiol. Biochim. 90:B21.

    Article  Google Scholar 

  10. Djamgoz, M.B., M.W Hankins, J. Hirano, and S.N. Archer. 1997. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res. 37:3509–3529.

    Article  PubMed  CAS  Google Scholar 

  11. Euler, T., H. Schneider, and H. Wassle. 1996. Glutamate responses of bipolar cells in a slice preparation of the rat retina. J. Neurosci. 16:2934–2944.

    PubMed  CAS  Google Scholar 

  12. Feigenspan, A., S. Gustincich, B.P. Bean, and E. Raviola. 1998. Spontaneous activity of solitary dopaminergic cells of the retina. J. Neurosci. 18:6776–6789.

    PubMed  CAS  Google Scholar 

  13. Fields-Berry, S.C., A.L. Halliday, and C.L. Cepko. 1992. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl. Acad. Sci. USA 89:693–697.

    Article  PubMed  CAS  Google Scholar 

  14. Geiger, J.R., T. Melcher, D.S. Koh, B. Sakmann, P.H. Seeburg, P. Jonas, and H. Monyer. 1995. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204.

    Article  PubMed  CAS  Google Scholar 

  15. Gustincich, S., D.K. Wu, L.J. Koopman, and E. Raviola 1996. A transgenic approach to the study of neural al networks in the retina. Invest. Ophthalmol. Vis. Sci. 37:S1060.

    Google Scholar 

  16. Gustincich, S., A. Feigenspan, D.K. Wu, L.J. Koopman, and E. Raviola. 1997. Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18:723–736.

    Article  PubMed  CAS  Google Scholar 

  17. Gustincich, S., A. Feigenspan, W Sieghart, and E. Raviola. 1999. Composition of the GABA(A) receptors of retinal dopaminergic neurons. J. Neurosci. 19:7812–7822.

    PubMed  CAS  Google Scholar 

  18. Harlow, E. and D. Lane. 1988. Antibodies: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  19. Jonas P., C. Racca, B. Sakmann, P.H. Seeburg, and H. Monyer. 1994. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12:1281–1289.

    Article  PubMed  CAS  Google Scholar 

  20. Kam, W., E. Clauser, Y.S. Kim, Y.W. Kan, and W.J. Rutter. 1985. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. USA 82:8715–8719.

    Article  PubMed  CAS  Google Scholar 

  21. Lam, D.M. 1972. Biosynthesis of acetylcholine in turtle photoreceptors. Proc. Natl. Acad. Sci. USA 69: 1987–1991.

    Article  PubMed  CAS  Google Scholar 

  22. Lambolez, B., E. Audinat, P. Bochet, F. Crepel, and J. Rossier. 1992. AMPA receptor sub units expressed by single Purkinje cells. Neuron 9:247–258.

    Article  PubMed  CAS  Google Scholar 

  23. MacGregor, G.R., A.E. Mogg, J.F. Burke, and C.T. Caskey. 1987. Histochemical staining of clonal mammalian cell lines expressing E. coli beta-galactosidase indicates heterogeneous expression of the bacterial gene. Somat. Cell Mol. Genet. 13:253–65.

    Article  PubMed  CAS  Google Scholar 

  24. MacNeil, M.A., J.K Heussy, R.F. Dacheux, E. Raviola, and R.H. Masland. 1999. The shapes and numbers of amacrine cells: matching of photofilled with golgistained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413:305–326.

    Article  PubMed  CAS  Google Scholar 

  25. Masland, R.H. and E. Raviola. 2000. Confronting complexity: strategies for understanding the microcircuitry of the retina. Ann. Rev. Neurosci. 23:249–284.

    Article  PubMed  CAS  Google Scholar 

  26. Mayahara, H., H. Hirano, T. Saito, and K Ogawa. 1967. The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie 11:88–96.

    Article  PubMed  CAS  Google Scholar 

  27. McComb, R.B. and G.N. Bowers, Jr. 1972. Study of optimum buffer conditions for measuring alkaline phosphatase activity in human serum. Clin. Chem. 18:97–104.

    PubMed  CAS  Google Scholar 

  28. Monyer, H. and B. Lambolez. 1995. Molecular biology and physiology at the single-cell level. Curr. Opin. Neurobiol. 5:382–387.

    Article  PubMed  CAS  Google Scholar 

  29. Oberdick, J., R.J. Smeyne, J.R. Mann, S. Zackson, and J.I. Morgan. 1990. A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248:223–226.

    Article  PubMed  CAS  Google Scholar 

  30. O’Dowd, D.K. and M.A. Smith. 1996. Single-cell analysis of gene expression in the nervous system. Measurements at the edge of chaos. Mol. Neurobiol. 13:199–211.

    Article  PubMed  CAS  Google Scholar 

  31. Parra, P., A.I. Gulyas, and R. Miles. 1998. How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993.

    Article  PubMed  CAS  Google Scholar 

  32. Posen, S., C.J. Cornish, M. Home, and P.K. Saini. 1969. Placental alkaline phosphatase and pregnancy. Ann. NY Acad. Sci. 166:733–774.

    Article  PubMed  CAS  Google Scholar 

  33. Spergel, D.J., U. Kruth, D.E. Hanley, R. Sprengel, and P.H. Seeburg. 1999. GABA-and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19:2037–2050.

    PubMed  CAS  Google Scholar 

  34. Stevens, C.F. 1998. Neuronal diversity: too many cell types for comfort? Curr. Biol. 8:R708–R710.

    Article  PubMed  CAS  Google Scholar 

  35. Sucher, N.J. and D.L. Deitcher. 1995. PCR and patch-clamp analysis of single neurons. Neuron 14:1095–1100.

    Article  PubMed  CAS  Google Scholar 

  36. Tsien, R.Y. 1998. The green fluorescent protein. Ann. Rev. Biochem. 67:509–544.

    Article  PubMed  CAS  Google Scholar 

  37. Van Gelder, R.N., M.E. von Zastrow, A. Yool, W.C. Dement, J.D. Barchas, and J.H. Eberwine. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87:1663–1667.

    Article  PubMed  Google Scholar 

  38. Versaux-Botteri, C.,J. Nguyen-Legros, A. Vigny, and N. Raoux. 1984. Morphology, density and distribution of tyrosine hydroxylase-like immunoreactive cells in the retina of mice. Brain Res. 301:192–197.

    Article  PubMed  Google Scholar 

  39. Witkovsky, P. and A. Dearry. 1991. Functional roles of dopamine in the vertebrate retina. Progr. Retinal Res. 11:247–292.

    Article  CAS  Google Scholar 

  40. Zlokarnik, G., P.A. Negulescu, T.E. Knapp, L. Mere, N. Burres, L. Feng, M. Whitney, K. Roemer, and R.Y. Tsien. 1998. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88.

    Article  PubMed  CAS  Google Scholar 

  41. Zolotukhin, S., M. Potter, W.W. Hauswirth, J. Guy, and N. Muzyczka. 1996. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70:4646–4654.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gustincich, S., Feigenspan, A., Raviola, E. (2002). Analysis of Gene Expression in Genetically Labeled Single Cells. In: Merighi, A., Carmignoto, G. (eds) Cellular and Molecular Methods in Neuroscience Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22460-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22460-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95386-1

  • Online ISBN: 978-0-387-22460-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics