The Genetics of Fungal Differentiation and Morphogenesis



Growth of the vegetative fungal hypha,showing polarized,invasive extension growth localized at the hyphal apex, is the fundamental growth pattern of all members of Kingdom Fungi, and of some members of related groups. If we can borrow a word used in everyday computer terminology, the fungal hypha is the default growth condition of the fungal genome. Vegetative hyphal growth requires coordinated expression of the components of the genome so that the whole of the growth process can be supported, located,and projected into the extension of the hyphal tip. All of this requires regulation of gene expression. Most fungi also produce a range of cell types that differ in cell shape and growth pattern. These require further programs in which gene expression is integrated into developmental routines involving transmission and receipt of signals to organize transitions between different cell types.Some of those signals will be intracellular, and some will be extracellular relating the nutritional and physical state of the environment,but all will require signal transduction pathways comprising receptor, transmission,and amplication and effector components.


Aspergillus Nidulans Schizophyllum Commune Vegetative Hypha Repeat Induce Point Fungal Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications and Websites Worth a Visit

  1. Banuett, F. (1998). Signaling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiology and Molecular Biology Reviews 62, 249–274.PubMedGoogle Scholar
  2. Belmont, A.S., Dietzel, S., Nye, A.C., Strukov, Y.G. & Tumbar, T. (1999). Large-scale chromatin structure and function. Current Opinion in Cell Biology 11, 307–311.PubMedCrossRefGoogle Scholar
  3. Biological Procedures Online, a library of step-by-step recipes at
  4. Böolker, M. (1998). Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology 25, 143–156.CrossRefGoogle Scholar
  5. Chiu, S.W. & Moore, D. (1990). A mechanism for gill pattern formation in Coprinus cinereus. Mycological Research 94, 320–326.Google Scholar
  6. Cogoni, C. & Macino, G. (2000). Post-transcriptional gene silencing across kingdoms. Current Opinion in Genetics & Development 10, 638–643.CrossRefGoogle Scholar
  7. De Groot, P.W.J., Schaap, P.J., Sonnenberg, A.S.M., Visser, J. & Van Griensven, L.J.L.D. (1996). The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. Journal of Molecular Biology 257, 1008–1018.PubMedCrossRefGoogle Scholar
  8. De Groot, P.W.J., Schaap, P.J., Van Griensven, L.J.L.D. & Visser, J. (1997). Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology 143, 1993–2001.PubMedGoogle Scholar
  9. Developmental Biology Virtual Library is at
  10. Developmental Biology Cinema is at
  11. Dreyfuss, G. & Struhl, K. (1999). Nucleus and gene expression. Multiprotein complexes, mechanistic connections and nuclear organization. Current Opinion in Cell Biology 11, 303–306.CrossRefGoogle Scholar
  12. Finnegan, E.J., Peacock, W.J. & Dennis, E.S. (2000). DNA methylation, a key regulator of plant development and other processes. Current Opinion in Genetics & Development 10, 217–223.Google Scholar
  13. Gancedo, J.M. (2001). Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiology Reviews 25, 107–123.PubMedCrossRefGoogle Scholar
  14. Grosveld, F. (1999). Activation by locus control regions? Current Opinion in genetic & development 9, 152–157CrossRefGoogle Scholar
  15. Habu, Y., Kakutani, T. & Paszkowski, J. (2001). Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation. Current Opinion in Genetics & Development 11, 215–220.CrossRefGoogle Scholar
  16. Hicke, L. (1999). Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends in Cell Biology 9, 107–112.PubMedCrossRefGoogle Scholar
  17. Horton, J.S., Palmer, G.E. & Smith, W.J. (1999). Regulation of dikaryon-expressed genes by FRT1 in the basidiomycete Schizophyllum commune. Fungal Genetics and Biology 26, 33–47.PubMedCrossRefGoogle Scholar
  18. Hsieh, C.-L. (2000). Dynamics of DNA methylation pattern. Current Opinion in Genetics & Development 10, 224–228.CrossRefGoogle Scholar
  19. Idekar, T., Thorsson, V, Ranish, J.A., Christmas, R., Buhler, X, Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. & Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.CrossRefGoogle Scholar
  20. Johnston, M. (1999). Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends in Genetics 15, 29–33.PubMedCrossRefGoogle Scholar
  21. Jones, P.A. (1999). The DNA methylation paradox. Trends in Genetics 15, 34–37.PubMedCrossRefGoogle Scholar
  22. Kass, S.U., Pruss, D. & Wolffe, A.P. (1997). How does DNA methylation repress transcription? Trends in Genetics 13, 444–449.PubMedCrossRefGoogle Scholar
  23. Kornberg, R.D. (1999). Eukaryotic transcription control. Trends in Genetics 15, M46–M49.CrossRefGoogle Scholar
  24. Kron, S.J. & Gow, N.A.R. (1995). Budding yeast morphogenesis: signaling, cytoskeleton and cell cycle. Current Opinion in Cell Biology 7, 845–855.PubMedCrossRefGoogle Scholar
  25. Köues, U. (2000). Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiology and Molecular Biology Reviews 64, 316–353.CrossRefGoogle Scholar
  26. Köues, U. & Liu, Y. (2000). Fruiting body production in basidiomycetes. Applied Microbiology & Biotechnology 54, 141–152.CrossRefGoogle Scholar
  27. Legrain, P., Wojcik, J. & Gauthier, J.-M. (2001). Protein-protein interaction maps: a lead towards cellular functions. Trends in Genetics 17, 346–352.PubMedCrossRefGoogle Scholar
  28. Lipshitz, H.D. & Smibert, C.A. (2000). Mechanisms of RNA localization and translational regulation. Current Opinion in Genetics & Development 10, 476–488.CrossRefGoogle Scholar
  29. Madhani, H.D. & Fink, G.R. (1998). The control of filamentous differentiation and virulence in fungi. Trends in Cell Biology 8, 348–353.PubMedCrossRefGoogle Scholar
  30. Malik, S. & Roeder, R.G. (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends in Biochemical Sciences 25, 277–283.PubMedCrossRefGoogle Scholar
  31. Martienssen, R.A. & Richards, E.J. (1995). DNA methylation in eukaryotes. Current Opinion in Genetics & Development 5, 234–242.CrossRefGoogle Scholar
  32. Matzke, M.A., Matzke, A.J.M., Pruss, G.J. & Vance, V.B. (2001). RNA-based silencing strategies in plants. Current Opinion in Genetics & Development 11, 221–997.CrossRefGoogle Scholar
  33. Melcher, K. (1997). Galactose metabolism in Saccharomyces cerevisiae: a paradigm for eukaryotic gene regulation. In Yeast Sugar Metabolism (F.K. Zimmermann & K.-D. Entian, eds.), pp. 235–269. Technomic Publishing Co., Inc.: Lancaster, PA.Google Scholar
  34. Miller, B.L. (1993). Brushing-up on bristles—complex genes and morphogenesis in molds. Trends in Genetics 9, 293–295.PubMedCrossRefGoogle Scholar
  35. Moore, D. (1998). Fungal Morphogenesis. Cambridge University Press: New York.Google Scholar
  36. Muraguchi, H. & Kamada, T. (1998). The ichl gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development 125, 3133–3141.PubMedGoogle Scholar
  37. Murata, Y., Fujii, M., Zolan, M.E. & Kamada, T. (1998). Molecular analysis of pccl, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149, 1753–1761.PubMedGoogle Scholar
  38. Pérez-Martm, J. (1999). Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiology Reviews 23, 503–523.Google Scholar
  39. Preiss,T. & Hentze, M.W. (1999). From factors to mechanisms: translation and translational control in eukaryotes. Current Opinion in Genetics & Development 9, 515–521.CrossRefGoogle Scholar
  40. Sanchez-Martínez, C. & Pérez-Martín, J. (2001). Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis—similar inputs, different outputs. Current Opinion in Microbiology 4, 214–221.PubMedCrossRefGoogle Scholar
  41. Selker, E.U. (1997). Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends in Genetics 13, 296–301.PubMedCrossRefGoogle Scholar
  42. Timberlake, W.E. (1993). Translational triggering and feedback fixation in the control of fungal development. Plant Cell 5, 1453–1460.PubMedCrossRefGoogle Scholar
  43. Tucker, C.L., Gera, J.F. & Uetz, P. (2001). Towards an understanding of complex protein networks. Trends in Cell Biology 11, 102–106.PubMedCrossRefGoogle Scholar
  44. Van Griensven, L.J.L.D. (2000). Science and Cultivation of Edible Fungi, Mushroom Science XV, vols. 1 & 2. Balkema: Rotterdam.Google Scholar
  45. Vaucheret, H. & Fagard, M. (2001). Transcriptional gene silencing in plants: targets, inducers and regulators. Trends in Genetics 17, 29–35.PubMedCrossRefGoogle Scholar
  46. Wessels, J.G.H. (2000). Hydrophobins, unique fungal proteins. Mycologist 14, 153–159.Google Scholar
  47. Wu, C.-T & Morris, J.R. (1999). Transvection and other homology effects. Current Opinion in Genetics & Development 9, 237–246.CrossRefGoogle Scholar

Historical Publications Worth Knowing About

  1. Buller, A.H.R. (1922). Researches on Fungi, vol. 2. Longman Green &Co: London.Google Scholar
  2. Buller, A.H.R. (1931). Researches on Fungi, vol. 4. Longman Green & Co.: London.Google Scholar
  3. Buller, A.H.R. (1931). Researches on Fungi, vol. 4. Longmans, Green & Co.: London.Google Scholar
  4. Chang, S.T. & Hayes, W. A. (1978). Biology and Cultivation of Edible Mushrooms. Academic Press: New York & London.Google Scholar
  5. Chiu, S.W., Moore, D. & Chang, S.T. (1989). Basidiome polymorphism in Volvariella bombycina. Mycological Research 92, 69–77.Google Scholar
  6. Esser, K. & Meinhardt, F. (1977). A common genetic control of dikaryotic and monokaryotic fruiting in the basidiomycete Agrocybe aegerita. Molecular & General Genetics 155, 113–115.CrossRefGoogle Scholar
  7. Esser, K., Saleh, F. & Meinhardt, F. (1979). Genetics of fruit body production in higher basidiomycetes. II. Monokaryotic and dikaryotic fruiting in Schizophyllum commune. Current Genetics 1, 85–88.CrossRefGoogle Scholar
  8. Esser, K. & Straub, J. (1958). Genetische Untersuchungen an Sordaria macrospora Auersw., Kompensation und induktion bei genbedingten Entwicklungsdefekten. Zeitschrift föur Vererbungslehre 89, 729–746.CrossRefGoogle Scholar
  9. Flegg, P.B., Spencer D.M. & Wood, D.A. (1985). The Biology and Technology of the Cultivated Mushroom. John Wiley & Sons: New York.Google Scholar
  10. Hoge, J.H.C., Springer, J. & Wessels, J.G.H. (1982). Changes in complex RNA during fruit-body initiation in the fungus Schizophyllum commune. Experimental Mycology 6, 233–243.CrossRefGoogle Scholar
  11. Leslie, J.F. & Leonard, T.J. (1979). Three independent genetic systems that control initiation of a fungal fruiting body. Molecular & General Genetics 171, 257–260.CrossRefGoogle Scholar
  12. Moore, D. (1981). Developmental genetics of Coprinus cinereus: genetic evidence that carpophores and sclerotia share a common pathway of initiation. Current Genetics 3, 145–150.CrossRefGoogle Scholar
  13. Moore, D., Casselton, L.A., Wood, D.A. & Frankland, J.C. (1985). Developmental Biology of Higher Fungi. Cambridge University Press: Cambridge, U.K.Google Scholar
  14. Moore, D., Elhiti, M.M.Y & Butler, R.D. (1979). Morphogenesis of the carpophore of Coprinus cinereus. New Phytologist 83, 695–722.CrossRefGoogle Scholar
  15. Mulder, G.H. & Wessels, J.G.H. (1986). Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune in relation to fruiting. Experimental Mycology 10, 214–227.CrossRefGoogle Scholar
  16. Watling, R. (1971). Polymorphism in Psilocybe merdaria. New Phytologist 70, 307–326.CrossRefGoogle Scholar
  17. Yashar, B.M. & Pukkila, P.J. (1985). Changes in polyadenylated RNA sequences associated with fruiting body morphogenesis in Coprinus cinereus. Transactions of the British Mycological Society 84, 215–226.Google Scholar
  18. Ye, X.S., Wu, L. & Osmani, S.A. (2001). Signal transduction in filamentous fungi: regulation of protein kinases. In Molecular and Cellular Biology of Filamentous Fungi (N.J. Talbot, ed.), pp. 157–174. Oxford University Press: Oxford, U.K.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2002

Personalised recommendations