Essential Fungal Genetics pp 282-342 | Cite as
The Genetics of Fungal Differentiation and Morphogenesis
- 317 Downloads
Abstract
Growth of the vegetative fungal hypha,showing polarized,invasive extension growth localized at the hyphal apex, is the fundamental growth pattern of all members of Kingdom Fungi, and of some members of related groups. If we can borrow a word used in everyday computer terminology, the fungal hypha is the default growth condition of the fungal genome. Vegetative hyphal growth requires coordinated expression of the components of the genome so that the whole of the growth process can be supported, located,and projected into the extension of the hyphal tip. All of this requires regulation of gene expression. Most fungi also produce a range of cell types that differ in cell shape and growth pattern. These require further programs in which gene expression is integrated into developmental routines involving transmission and receipt of signals to organize transitions between different cell types.Some of those signals will be intracellular, and some will be extracellular relating the nutritional and physical state of the environment,but all will require signal transduction pathways comprising receptor, transmission,and amplication and effector components.
Keywords
Aspergillus Nidulans Schizophyllum Commune Vegetative Hypha Repeat Induce Point Fungal DifferentiationPreview
Unable to display preview. Download preview PDF.
Publications and Websites Worth a Visit
- Banuett, F. (1998). Signaling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiology and Molecular Biology Reviews 62, 249–274.PubMedGoogle Scholar
- Belmont, A.S., Dietzel, S., Nye, A.C., Strukov, Y.G. & Tumbar, T. (1999). Large-scale chromatin structure and function. Current Opinion in Cell Biology 11, 307–311.PubMedCrossRefGoogle Scholar
- Biological Procedures Online, a library of step-by-step recipes at http://www.sciencemedcentral.com.
- Böolker, M. (1998). Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology 25, 143–156.CrossRefGoogle Scholar
- Chiu, S.W. & Moore, D. (1990). A mechanism for gill pattern formation in Coprinus cinereus. Mycological Research 94, 320–326.Google Scholar
- Cogoni, C. & Macino, G. (2000). Post-transcriptional gene silencing across kingdoms. Current Opinion in Genetics & Development 10, 638–643.CrossRefGoogle Scholar
- De Groot, P.W.J., Schaap, P.J., Sonnenberg, A.S.M., Visser, J. & Van Griensven, L.J.L.D. (1996). The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. Journal of Molecular Biology 257, 1008–1018.PubMedCrossRefGoogle Scholar
- De Groot, P.W.J., Schaap, P.J., Van Griensven, L.J.L.D. & Visser, J. (1997). Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology 143, 1993–2001.PubMedGoogle Scholar
- Developmental Biology Virtual Library is at http://sdb.bio.purdue.edu/vl_db.html.
- Developmental Biology Cinema is at http://sdb.bio.purdue.edu/dbcinema.
- Dreyfuss, G. & Struhl, K. (1999). Nucleus and gene expression. Multiprotein complexes, mechanistic connections and nuclear organization. Current Opinion in Cell Biology 11, 303–306.CrossRefGoogle Scholar
- Finnegan, E.J., Peacock, W.J. & Dennis, E.S. (2000). DNA methylation, a key regulator of plant development and other processes. Current Opinion in Genetics & Development 10, 217–223.Google Scholar
- Gancedo, J.M. (2001). Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiology Reviews 25, 107–123.PubMedCrossRefGoogle Scholar
- Grosveld, F. (1999). Activation by locus control regions? Current Opinion in genetic & development 9, 152–157CrossRefGoogle Scholar
- Habu, Y., Kakutani, T. & Paszkowski, J. (2001). Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation. Current Opinion in Genetics & Development 11, 215–220.CrossRefGoogle Scholar
- Hicke, L. (1999). Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends in Cell Biology 9, 107–112.PubMedCrossRefGoogle Scholar
- Horton, J.S., Palmer, G.E. & Smith, W.J. (1999). Regulation of dikaryon-expressed genes by FRT1 in the basidiomycete Schizophyllum commune. Fungal Genetics and Biology 26, 33–47.PubMedCrossRefGoogle Scholar
- Hsieh, C.-L. (2000). Dynamics of DNA methylation pattern. Current Opinion in Genetics & Development 10, 224–228.CrossRefGoogle Scholar
- Idekar, T., Thorsson, V, Ranish, J.A., Christmas, R., Buhler, X, Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. & Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.CrossRefGoogle Scholar
- Johnston, M. (1999). Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends in Genetics 15, 29–33.PubMedCrossRefGoogle Scholar
- Jones, P.A. (1999). The DNA methylation paradox. Trends in Genetics 15, 34–37.PubMedCrossRefGoogle Scholar
- Kass, S.U., Pruss, D. & Wolffe, A.P. (1997). How does DNA methylation repress transcription? Trends in Genetics 13, 444–449.PubMedCrossRefGoogle Scholar
- Kornberg, R.D. (1999). Eukaryotic transcription control. Trends in Genetics 15, M46–M49.CrossRefGoogle Scholar
- Kron, S.J. & Gow, N.A.R. (1995). Budding yeast morphogenesis: signaling, cytoskeleton and cell cycle. Current Opinion in Cell Biology 7, 845–855.PubMedCrossRefGoogle Scholar
- Köues, U. (2000). Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiology and Molecular Biology Reviews 64, 316–353.CrossRefGoogle Scholar
- Köues, U. & Liu, Y. (2000). Fruiting body production in basidiomycetes. Applied Microbiology & Biotechnology 54, 141–152.CrossRefGoogle Scholar
- Legrain, P., Wojcik, J. & Gauthier, J.-M. (2001). Protein-protein interaction maps: a lead towards cellular functions. Trends in Genetics 17, 346–352.PubMedCrossRefGoogle Scholar
- Lipshitz, H.D. & Smibert, C.A. (2000). Mechanisms of RNA localization and translational regulation. Current Opinion in Genetics & Development 10, 476–488.CrossRefGoogle Scholar
- Madhani, H.D. & Fink, G.R. (1998). The control of filamentous differentiation and virulence in fungi. Trends in Cell Biology 8, 348–353.PubMedCrossRefGoogle Scholar
- Malik, S. & Roeder, R.G. (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends in Biochemical Sciences 25, 277–283.PubMedCrossRefGoogle Scholar
- Martienssen, R.A. & Richards, E.J. (1995). DNA methylation in eukaryotes. Current Opinion in Genetics & Development 5, 234–242.CrossRefGoogle Scholar
- Matzke, M.A., Matzke, A.J.M., Pruss, G.J. & Vance, V.B. (2001). RNA-based silencing strategies in plants. Current Opinion in Genetics & Development 11, 221–997.CrossRefGoogle Scholar
- Melcher, K. (1997). Galactose metabolism in Saccharomyces cerevisiae: a paradigm for eukaryotic gene regulation. In Yeast Sugar Metabolism (F.K. Zimmermann & K.-D. Entian, eds.), pp. 235–269. Technomic Publishing Co., Inc.: Lancaster, PA.Google Scholar
- Miller, B.L. (1993). Brushing-up on bristles—complex genes and morphogenesis in molds. Trends in Genetics 9, 293–295.PubMedCrossRefGoogle Scholar
- Moore, D. (1998). Fungal Morphogenesis. Cambridge University Press: New York.Google Scholar
- Muraguchi, H. & Kamada, T. (1998). The ichl gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development 125, 3133–3141.PubMedGoogle Scholar
- Murata, Y., Fujii, M., Zolan, M.E. & Kamada, T. (1998). Molecular analysis of pccl, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149, 1753–1761.PubMedGoogle Scholar
- Pérez-Martm, J. (1999). Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiology Reviews 23, 503–523.Google Scholar
- Preiss,T. & Hentze, M.W. (1999). From factors to mechanisms: translation and translational control in eukaryotes. Current Opinion in Genetics & Development 9, 515–521.CrossRefGoogle Scholar
- Sanchez-Martínez, C. & Pérez-Martín, J. (2001). Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis—similar inputs, different outputs. Current Opinion in Microbiology 4, 214–221.PubMedCrossRefGoogle Scholar
- Selker, E.U. (1997). Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends in Genetics 13, 296–301.PubMedCrossRefGoogle Scholar
- Timberlake, W.E. (1993). Translational triggering and feedback fixation in the control of fungal development. Plant Cell 5, 1453–1460.PubMedCrossRefGoogle Scholar
- Tucker, C.L., Gera, J.F. & Uetz, P. (2001). Towards an understanding of complex protein networks. Trends in Cell Biology 11, 102–106.PubMedCrossRefGoogle Scholar
- Van Griensven, L.J.L.D. (2000). Science and Cultivation of Edible Fungi, Mushroom Science XV, vols. 1 & 2. Balkema: Rotterdam.Google Scholar
- Vaucheret, H. & Fagard, M. (2001). Transcriptional gene silencing in plants: targets, inducers and regulators. Trends in Genetics 17, 29–35.PubMedCrossRefGoogle Scholar
- Wessels, J.G.H. (2000). Hydrophobins, unique fungal proteins. Mycologist 14, 153–159.Google Scholar
- Wu, C.-T & Morris, J.R. (1999). Transvection and other homology effects. Current Opinion in Genetics & Development 9, 237–246.CrossRefGoogle Scholar
Historical Publications Worth Knowing About
- Buller, A.H.R. (1922). Researches on Fungi, vol. 2. Longman Green &Co: London.Google Scholar
- Buller, A.H.R. (1931). Researches on Fungi, vol. 4. Longman Green & Co.: London.Google Scholar
- Buller, A.H.R. (1931). Researches on Fungi, vol. 4. Longmans, Green & Co.: London.Google Scholar
- Chang, S.T. & Hayes, W. A. (1978). Biology and Cultivation of Edible Mushrooms. Academic Press: New York & London.Google Scholar
- Chiu, S.W., Moore, D. & Chang, S.T. (1989). Basidiome polymorphism in Volvariella bombycina. Mycological Research 92, 69–77.Google Scholar
- Esser, K. & Meinhardt, F. (1977). A common genetic control of dikaryotic and monokaryotic fruiting in the basidiomycete Agrocybe aegerita. Molecular & General Genetics 155, 113–115.CrossRefGoogle Scholar
- Esser, K., Saleh, F. & Meinhardt, F. (1979). Genetics of fruit body production in higher basidiomycetes. II. Monokaryotic and dikaryotic fruiting in Schizophyllum commune. Current Genetics 1, 85–88.CrossRefGoogle Scholar
- Esser, K. & Straub, J. (1958). Genetische Untersuchungen an Sordaria macrospora Auersw., Kompensation und induktion bei genbedingten Entwicklungsdefekten. Zeitschrift föur Vererbungslehre 89, 729–746.CrossRefGoogle Scholar
- Flegg, P.B., Spencer D.M. & Wood, D.A. (1985). The Biology and Technology of the Cultivated Mushroom. John Wiley & Sons: New York.Google Scholar
- Hoge, J.H.C., Springer, J. & Wessels, J.G.H. (1982). Changes in complex RNA during fruit-body initiation in the fungus Schizophyllum commune. Experimental Mycology 6, 233–243.CrossRefGoogle Scholar
- Leslie, J.F. & Leonard, T.J. (1979). Three independent genetic systems that control initiation of a fungal fruiting body. Molecular & General Genetics 171, 257–260.CrossRefGoogle Scholar
- Moore, D. (1981). Developmental genetics of Coprinus cinereus: genetic evidence that carpophores and sclerotia share a common pathway of initiation. Current Genetics 3, 145–150.CrossRefGoogle Scholar
- Moore, D., Casselton, L.A., Wood, D.A. & Frankland, J.C. (1985). Developmental Biology of Higher Fungi. Cambridge University Press: Cambridge, U.K.Google Scholar
- Moore, D., Elhiti, M.M.Y & Butler, R.D. (1979). Morphogenesis of the carpophore of Coprinus cinereus. New Phytologist 83, 695–722.CrossRefGoogle Scholar
- Mulder, G.H. & Wessels, J.G.H. (1986). Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune in relation to fruiting. Experimental Mycology 10, 214–227.CrossRefGoogle Scholar
- Watling, R. (1971). Polymorphism in Psilocybe merdaria. New Phytologist 70, 307–326.CrossRefGoogle Scholar
- Yashar, B.M. & Pukkila, P.J. (1985). Changes in polyadenylated RNA sequences associated with fruiting body morphogenesis in Coprinus cinereus. Transactions of the British Mycological Society 84, 215–226.Google Scholar
- Ye, X.S., Wu, L. & Osmani, S.A. (2001). Signal transduction in filamentous fungi: regulation of protein kinases. In Molecular and Cellular Biology of Filamentous Fungi (N.J. Talbot, ed.), pp. 157–174. Oxford University Press: Oxford, U.K.Google Scholar