Skip to main content

The Pulmonary Circulation in Health and Disease

  • Chapter
Pulmonary Biology in Health and Disease

Abstract

Control of blood flow through the pulmonary circulation is unique for several reasons. Unlike other organs, the lungs must accept the entire cardiac output. Despite receiving the entire cardiac output, pulmonary artery pressure must remain low to allow the exchange of oxygen and carbon dioxide across the thin layer of cells separating the capillaries and the alveoli. The maintenance of this low pressure circulation is dependent upon the metabolically active pulmonary vascular endothelium and the production of vasoactive mediators. Endothelial dysfunction can result in alterations in pulmonary vascular tone, pulmonary hypertension, or alterations in vascular permeability, pulmonary edema. The critical role of the endothelium in the maintenance of vascular tone and integrity will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abman, S.H., Chatfield, B.A., Hall, S.L., and McMurtry, I.E. (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 259, H1921–H1927.

    PubMed  CAS  Google Scholar 

  • Adatia, I., Barrow, S.E., Stratton, P.D., Miall-Allen, V.M., Ritter, J.M., and Haworth, S.G. (1993) Thromboxane A2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease. Circulation 88, 2117–2122.

    PubMed  CAS  Google Scholar 

  • Adatia, I., Lillihei, C., Arnold, J.H., Thompson, J.E., Palazzo, R., Fackler, J.C., and Wessel, D.L. (1994) Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann. Thorac. Surg. 57, 1311–1318.

    PubMed  CAS  Google Scholar 

  • Allen, S.W., Chatfield, B.A., Koppenhafer, S.A., Schaffer, M.S., Wolfe, R.R., and Abman, S.H. (1993) Circulating immunoreactive endothelin-1 in children with pulmonary hypertension. Association with acute hypoxic pulmonary vasoreactivity. Am. Rev. Respir. Dis. 148, 519–522.

    PubMed  CAS  Google Scholar 

  • Allison, R.C. (1991) Initial treatment of pulmonary edema: a physiological approach. Am. J. Med. Sci. 302, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Anand, I.S., Prasad, B.A., Chugh, S.S., Rao, K.R., Cornfield, D.N., Milla, C.E., et al. (1998) Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema. Circulation 98, 2441–2445.

    PubMed  CAS  Google Scholar 

  • Arai, H., Hori, S., Aramori, I., Ohkubo, H., and Nakanishi, S. (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S.L., Huang, J., Hampl, V, Nelson, D.P, Shultz, P.J., and Weir, E.K. (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Nati. Acad. Sci. USA 91, 7583–7587.

    Article  CAS  Google Scholar 

  • Archer, S.L., Huang, J., Henry, T., Peterson, D., and Weir, E.K. (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 73, 1100–1112.

    PubMed  CAS  Google Scholar 

  • Archer, S.L., and Weir, E.K. (1994) In: Clinical cardiology in the elderly, Chesler, E. (ed.) pp. 447–501. Futura Publishing Inc., Armonk, NY.

    Google Scholar 

  • Barst, R.J. (1999) Recent advances in the treatment of pediatrie pulmonary artery hypertension. Pediatr. Clin. North Am. 46, 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Barst, R.J., Rubin, L.J., McGoon, M.D., Caldwell, E.J., Long, W.A., and Levy, P.S. (1994) Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann. Intern. Med. 121, 409–415.

    PubMed  CAS  Google Scholar 

  • Bindl, L., Fahnenstich, H., and Peukert, U. (1994) Aerosolised prostacyclin for pulmonary hypertension in neonates. Arch. Dis. Child. 71, F214–F216.

    CAS  Google Scholar 

  • Block, E.R. (1992) Pulmonary endothelial cell pathobiology: implications for acute lung injury. Am. J. Med. Sci. 304, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Bonvallet, S.T., Zamore, M.R., Hasunuma, K., Sato, K., Hanasato, N., Anderson, D., et al. (1994) BQ123, an ETā-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am. J. Physiol. 266, H1327–H1331.

    PubMed  CAS  Google Scholar 

  • Brannon, T.S., North, A.J., Wells, L.B., and Shaul, P.W. (1994) Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J. Clin. Invest. 93, 2230–2235.

    PubMed  CAS  Google Scholar 

  • Busse, R., Fleming, I., and Hecker, M. (1993a) Signal transduction in endothelium-dependent vasodilation. Eur. Heart J. 14, 2–9.

    PubMed  CAS  Google Scholar 

  • Busse, R., Mülsch, A., Fleming, I., and Hecker, M. (1993b) Mechanisms of nitric oxide release from the vascular endothelium. Circulation 87, V-18–V-25.

    CAS  Google Scholar 

  • Calver, A., Collier, J., Moneada, S., and Vallance, P. (1992) Effect of local intra-arterial NG-monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator mechanism appears abnormal. J. Hypertens. 10, 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  • Cassin, S. (1993) The role of eicosanoids and endothelium-dependent factors in regulation of the fetal pulmonary circulation. J. Lipid Mediators 6, 477–485.

    CAS  Google Scholar 

  • Cassin, S., Dawes, G.S., Mott, J.C., Ross, B.B., and Strang, L.B. (1964) The vascular resistance of the fetal and newly ventilated lung of the lamb. J. Physiol. 171, 61–79.

    PubMed  CAS  Google Scholar 

  • Chen, Y.F., and Oparil, S. (2000) Endothelial dysfunction in the pulmonary vascular bed. Am. J. Med. Scie. 320, 2123–2132.

    Google Scholar 

  • Christman, B.W., McPherson, CD., Newman, J.H., King, G.A., Bernard, G.R., Groves, B.M., and Loyd, J.E. (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 327, 70–75.

    PubMed  CAS  Google Scholar 

  • Clozel, M., Clyman, R.I., Soifer, S.J., and Heymann, M.A. (1985) Thromboxane is not responsible for the high pulmonary vascular resistance in fetal lambs. Pediatr. Res. 19, 1254–1257.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J.P., Stamler, J., Andon, N., Davies, P.F, McKinley, G., and Loscalzo, J. (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am. J. Physiol. 259, H804–H812.

    PubMed  CAS  Google Scholar 

  • Cornfield, D., Chatfield, B., McQueston, J., McMurtry, I., and Abman, S. (1992) Effects of birthrelated stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am. J. Physiol. 262, H1474–H1481.

    PubMed  CAS  Google Scholar 

  • D’Alonso, G.E., Barst, R.J., Ayres, S.M., Bergofsky, E.H., Brundage, B.H., Detre, K.M., et al. (1991) Survival in patients with primary pulmonary hypertension: results of a national prospective study. Ann. Intern. Med. 115, 343–349.

    Google Scholar 

  • Dawes, G.S., Mott, J.C., Widdicombe, J.G., and Wyatt, D.G. (1953) Changes in the lungs of the newborn lamb. J. Physiol. (Lond) 121, 141–162.

    CAS  Google Scholar 

  • Eddahibi, S., Raffestin, B., Clozel, M., Levame, M., and Adnot, S. (1995) Protection from pulmonary hypertension with an orally active endothelin receptor antagonist in hypoxic rats. Am. J. Physiol. 268, H828–H835.

    PubMed  CAS  Google Scholar 

  • Emmanouilides, G., Moss, A., Duffie, E., and Adams, F. (1964) Pulmonary arterial pressure changes in human infants from birth to 3 days of age. J. Pediatr. 65, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Enhorning, G., Adams, F., and Norman, A. (1966) Effects of lung expansion on the fetal lamb circulation. Acta Paediatr. Scand. 55, 441–451.

    PubMed  CAS  Google Scholar 

  • Frosteil, C.G., Blomqvist, H., Hedenstierna, G., Lundberg, J., and Zapol, W.M. (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78, 427–435.

    Google Scholar 

  • Furchgott, R., and Zawadzki, J. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, V., Steele, P.M., Edwards, W.D., Gersh, B.J., McGoon, M.D., and Frye, R.L. (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70, 580–587.

    PubMed  CAS  Google Scholar 

  • Giaid, A., Yanagisawa, M., Langleben, D., Michel, R.P., Levy, R., Shennib, H., Kimura, S., et al. (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328, 1732–1739.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, W.W., Nemecek, S., and Stix, G. (1999) The 1998 Nobel Prizes in Science. Sci. Am. 280, 16–19.

    Google Scholar 

  • Goto, K., Kasuya, Y., Matsuki, N., Takuwa, Y., Kurihara, H., Ishikawa, T., et al. (1989) Endothelin activates the dihydropyridine-sensitive voltage-dependent Ca2+ channel in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 86, 3915–3918.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter, CA., Barry, B.K., McNamara, D.B., Gruetter, D.Y., Kadowitz, P.J., and Ignarro, L.J. (1979) Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. Adv. Cyclic Nucleot. Res. 5, 211–224.

    CAS  Google Scholar 

  • Hampl, V., Archer, S.L., Nelson, D.P., and Weir, E.K. (1993) Chronic EDRF inhibition and hypoxia: effects on pulmonary circulation and systemic blood pressure. J. Appl. Physiol. 75, 1748–1757.

    PubMed  CAS  Google Scholar 

  • Haworth, S.G. (1988) Pulmonary vascular remodeling in neonatal pulmonary hypertension. State of the art. Chest 93(Suppl.), 133S–138S.

    CAS  Google Scholar 

  • Higenbottam, T., Stenmark, K., and Simonneau, G. (1999) Treatments for severe pulmonary hypertension. Lancet 353, 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Hosoda, Y. (1994) Pathology of pulmonary hypertension: a human and experimental study. Pathol. Int. 44, 241–267.

    PubMed  CAS  Google Scholar 

  • Hutcheson, I.R., and Griffith, T.M. (1991) Release of endothelium-derived relaxing factor is modulated by both frequency and amplitude of pulsatile flow. Am. J. Physiol. 261, H257–H262.

    PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Nati. Acad. Sci. USA 84, 9265–9269.

    Article  CAS  Google Scholar 

  • Ikeda, K., Gutierrez, O.G., and Yamori, Y. (1992) Dietary NG-nitro-L-arginine induces sustained hypertension in normotensive Wistar-Kyoto rats. Clin. Exp. Pharmacol. Physiol. 19, 583–586.

    PubMed  CAS  Google Scholar 

  • Ingerman-Wojenski, C., Silver, M.J., Smith, J.B., and Macarak, E. (1981) Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J. Clin. Invest. 67, 1292–1296.

    PubMed  CAS  Google Scholar 

  • Isaacson, T.C., Hampl, V., Weir, E.K., Nelson, D.P, and Archer, S.L. (1994) Increased endothelium-derived nitric oxide in hypertensive pulmonary circulation of chronically hypoxic rats. J. Appl. Physiol. 76, 933–940.

    PubMed  CAS  Google Scholar 

  • Jones, D.K., Higginbaum, T.W., and Wallwork, J. (1987) Treatment of primary pulmonary hypertension with intravenous epoprostenol (prostacyclin). Br. Heart J. 57, 270–278.

    PubMed  CAS  Google Scholar 

  • Lonnqvist, P.A., Winberg, P., Lundell, B., Sellden, H., and Olsson, G.L. (1994) Inhaled nitric oxide in neonates and children with pulmonary hypertension. Acta Scand. Paediatr. 83, 1132–1136.

    CAS  Google Scholar 

  • Lushcer, T.F. (1992) Endothelin: Systemic arterial and pulmonary effects of a new peptide with potent biological properties. Am. Rev. Respir. Dis. 146, S56–S60.

    Google Scholar 

  • Madden, J.A., Vadula, M.S., and Kurup, V.P. (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 263, L384–L393.

    PubMed  CAS  Google Scholar 

  • Meyrick, B. (1987) In: Pulmonary circulation in health and disease, Will, J.A., Dawson, C.A., Weir, E.K., and Buckman, C.K. (eds.) pp. 27–39. Academic Press, Inc., BocaRaton.

    Google Scholar 

  • Meyrick, B. (1991) Structure function correlates in the pulmonary vasculature during acute lung injury and chronic pulmonary hypertension. Toxicol. Pathol. 4, 447–457.

    Google Scholar 

  • Mikhail, G.W., Gibbs, J.S., Richardson, M., Chester, A.D., Rogers, P., Wright, G., et al. (1995) The superiority of nebulized prostacyclin in the treatment of patients with primary and secondary pulmonary hypertension. Circulation (Suppl., Abstracts From the 68th Scientific Sessions) 92, 1–242.

    Google Scholar 

  • Miller, W.H. (1983) Physiological effects of cyclic GMP in the vertebrate retinal rod outer segment. Adv. Cyclic Nucleotide Res. 15, 495–511.

    CAS  Google Scholar 

  • Miyauchi, T., and Masaki, T. (1999) Pathophysiology of endothelin in the cardiovascular system. Ann. Rev. Physiol. 61, 391–415.

    Article  CAS  Google Scholar 

  • Miyauchi, T., Yorikane, R., Sakai, S., Sakurai, T., Okada, M., Nishikibe, M., et al. (1993) Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ. Res. 73, 887–897.

    PubMed  CAS  Google Scholar 

  • Morin, F., Eagan, E., and Norfleet, W. (1988) Development of pulmonary vascular response to oxygen. Am. J. Physiol. 254, H542–H546.

    PubMed  Google Scholar 

  • Murad, F., Arnold, W., Mittal, C.K., and Braughler, J.M. (1979) Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv. Cyclic Nucleot. Res. 11, 175–204.

    CAS  Google Scholar 

  • Nelson, M.T., and Quayle, J.M. (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799–C822.

    PubMed  CAS  Google Scholar 

  • Nishiwaki, K., Nyhan, D.P., Rock, P., Desai, P.M., Peterson, W.P., Pribble, C.G., and Murray, P.A. (1992) Nω-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am. J. Physiol. 262, H1331–H1337.

    PubMed  CAS  Google Scholar 

  • Oparil, S., Chen, S.J., Meng, Q.C., Elton, T.S., Yano, M., and Chen, Y.E. (1995) Endothelin-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 12, L95–L100.

    Google Scholar 

  • Palmer, R.M.J., Ferrige, A.G., and Moneada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., Rees, D.D., Ashton, D.S., and Moncada, S. (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 153, 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  • Parker, H.R., and Purves, M.J. (1967) Some effects of maternal hyperoxia and hypoxia on the blood gas tensions and vascular pressures in the foetal sheep. Q. J. Exp. Physiol. 52, 205–221.

    CAS  Google Scholar 

  • Pepke-Zaba, J., Higenbottam, T., Dinh-Xuan, A.T., Stone, D., and Wallwork, J. (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilation in pulmonary hypertension. Lancet 338, 1173–1174.

    Article  PubMed  CAS  Google Scholar 

  • Pitt, B.R., and St. Croix, C. (2002) Complex regulation of iNOS in lung. Am. J. Respir. Cell Mol. Biol. 26, 6–9.

    PubMed  CAS  Google Scholar 

  • Pohl, U., Holtz, J., Busse, R., and Bassenge, E. (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8, 37–44.

    PubMed  CAS  Google Scholar 

  • Pollock, D.M., Keith, T.L., and Highsmith, R.F. (1995) Endothelin receptors and calcium signaling. FASEB 9, 1195–1204.

    Google Scholar 

  • Post, J.M., Hume, J.R., Archer, S.L., and Weir, E.K. (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 262, C882–C890.

    PubMed  CAS  Google Scholar 

  • Rabinovitch, M., Keane, J.F., Norwood, W.I., Castaneda, A.R., and Reid, L. (1984) Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation 69, 655–667.

    PubMed  CAS  Google Scholar 

  • Rendas, A., Branthwaite, M., and Reid, L. (1978) Growth of pulmonary circulation in normal pigstructural analysis and cardiopulmonary function. J. Appl. Physiol. 45, 806–817.

    PubMed  CAS  Google Scholar 

  • Rich, S., Kaufmann, E., and Levy, S. (1992) The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N. Engl. J.Med. 327, 76–81.

    PubMed  CAS  Google Scholar 

  • Roberts, J.D, Lang, P., Bigatello, L., Vlahakes, G.J., and Zapol, W.M. (1993) Inhaled nitric oxide in congenital heart disease. Circulation 87, 447–453.

    PubMed  Google Scholar 

  • Roberts, XD, Polaner, D.M., Lang, P., and Zapol, W.M. (1992) Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340, 818–819.

    Article  PubMed  CAS  Google Scholar 

  • Roos, A. (1962) Poiseuille’s law and its limitations in vascular systems. Med. Thorac. 19, 224–238.

    PubMed  CAS  Google Scholar 

  • Rossaint, R., Falke, K.J., Lopez, F, Slama, K., Pison, U., and Zapol, W.M. (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 328, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G., Romero, J.C, and Vanhoutte, P.M. (1986) Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250, H1145–H1149.

    PubMed  CAS  Google Scholar 

  • Rudolph, A.M. (1974) In: Congenital diseases of the heart: clinical-physiological considerations in diagnosis and management, Rudolph, A.M. (ed.) pp. 29–48. Year Book Publishers Inc., Chicago.

    Google Scholar 

  • Sakurai, T., Yanagisawa, M., and Takuwa, Y. (1990) Cloning of a cDNA encoding a non-isopep-tide-selective subtype of the endothelin receptor. Nature 348, 732–735.

    Article  PubMed  CAS  Google Scholar 

  • Schror, K. (1993) The effect of prostaglandins and thromboxane A2 on coronary vascular tone-mechanisms of action and therapeutic implications. Eur. Heart J. 14, 34–41.

    PubMed  Google Scholar 

  • Shaul, P.W., Farrar, M.A., and Magness, R.R. (1993) Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am. J. Physiol. 265, H1056–H1063.

    PubMed  CAS  Google Scholar 

  • Stamler, J.S., Loh, E., Roddy, M.-A., Currie, K.E., and Creager, M.A. (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89, 2035–2040.

    PubMed  CAS  Google Scholar 

  • Sylvester, J.T. (2001) Hypoxic pulmonary vasoconstriction. Circ. Res. 88, 1228–1230.

    PubMed  CAS  Google Scholar 

  • Taguchi, H., Heistad, D.D., Kitazono, T, and Faraci, F.M. (1995) Dilation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of calcium-dependent K+ channels. Circ. Res. 76, 1057–1062.

    PubMed  CAS  Google Scholar 

  • Taylor, A.E., and Ballard, S.T. (1992) Microvascular function: transvascular exchange of fluid in the airways. Am. Rev. Respir. Dis. 146, S24–S27.

    PubMed  CAS  Google Scholar 

  • Tiktinsky, M.H., and Morin, F.C. (1993) Increasing oxygen tension dilates fetal pulmonary circulation via endothelium-derived relaxing factor. Am. J. Physiol. 265, H376–H380.

    PubMed  CAS  Google Scholar 

  • Tristani-Firouzi, M., Reeve, H.L., Tolarova, S., Weir, E.K., and Archer, S.L. (1996) Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltagesensitive potassium channel [see comments]. J. Clin. Invest. 98, 1959–1965.

    Article  PubMed  CAS  Google Scholar 

  • Vane, J.R., and Botting, R.M. (1995) Pharmacodynamic profile of prostacyclin. Am. J. Cardiol. 75, 3A–10A.

    Article  PubMed  CAS  Google Scholar 

  • Velvis, H., Moore, P., and Heymann, M.A. (1991) Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as a result of rhythmic distension of the lungs in fetal lambs. Pediatr. Res. 30, 62–68.

    PubMed  CAS  Google Scholar 

  • Walsh, M.P. (1991) Catalcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem. Cell Biol. 69, 771–780.

    PubMed  CAS  Google Scholar 

  • Weir, E.K., and Archer, S.L. (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 9, 183–189.

    PubMed  CAS  Google Scholar 

  • West, J.B. (1985) In: Respiratory physiology—the essentials, West, J.B. (ed.) pp. 31–48. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Yamamoto, K., Ikeda, U, Mito, H., Fujikawa, H., Sekiguchi, H., and Shimada, K. (1994) Endothelin production in pulmonary circulation of patients with mitral stenosis. Circulation 89, 2093–2098.

    PubMed  CAS  Google Scholar 

Recommended Readings

  • Dudek, S.M., and Garcia, J.G. (2001) Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487–1500.

    PubMed  CAS  Google Scholar 

  • Fineman, J.R., Soifer, S.J., and Heymann, M.A. (1995) Regulation of pulmonary vascular tone in the perinatal period. Ann. Rev. Physiol. 57, 115–134.

    Article  CAS  Google Scholar 

  • Higenbottam, T., Stenmark, K., and Simonneau, G. (1999) Treatments for severe pulmonary hypertension. Lancet 353(9150), 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Michelakis, E.D., Archer, S.L., and Weir, E.K. (1995) Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing. Physiol. Res. 44(6), 361–367.

    PubMed  CAS  Google Scholar 

  • Pitt, B.R., and St. Croix, C. (2002) Complex regulation of iNOS in lung. Am. J. Respir. Cell Mol. Biol. 26, 6–9.

    PubMed  CAS  Google Scholar 

  • Stenmark, K.R., and Mecham, R.P. (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Ann. Rev. Physiol. 59, 89–144.

    Article  CAS  Google Scholar 

  • West, J.B., and Mathieu-Costello, O. (1999) Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Ann. Rev. Physiol. 61, 543–572.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tristani-Firouzi, M., Archer, S.L., Kenneth Weir, E. (2002). The Pulmonary Circulation in Health and Disease. In: Bittar, E.E. (eds) Pulmonary Biology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22435-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22435-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95215-4

  • Online ISBN: 978-0-387-22435-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics