Skip to main content

On the Approximation of Complicated Dynamical Behavior

  • Chapter
The Theory of Chaotic Attractors

Abstract

We present efficient techniques for the numerical approximation of complicated dynamical behavior. In particular, we develop numerical methods which allow us to approximate Sinai-Ruelle-Bowen (SRB)-measures as well as (almost) cyclic behavior of a dynamical system. The methods are based on an appropriate discretization of the Frobenius-Perron operator, and two essentially different mathematical concepts are used: our idea is to combine classical convergence results for finite dimensional approximations of compact operators with results from ergodic theory concerning the approximation of SRB-measures by invariant measures of stochastically perturbed systems. The efficiency of the methods is illustrated by several numerical examples.

Received by the editors November 27, 1996; accepted for publication (in revised form) February 6, 1998; published electronically February 19, 1999. This research was partially supported by the Deutsche Forschungsgemeinschaft under grant De 448/5-2.

http://www.siam.org/journals/sinum/36-2/31300.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Benedicks and L.-S. Young, Sinai-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), pp. 541–576.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Blank and G. Keller, Random perturbations of chaotic dynamical systems: Stability of the spectrum, Nonlinearity, 11 (1998), pp. 1351–1364.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bowen and D. Ruelle, The ergodic theory of axiom a flows, Invent. Math., 29 (1975), pp. 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Chossat and M. Golubitsky, Symmetry-increasing bifurcation of chaotic attractors, Phys. D, 32 (1988), pp. 423–436.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Dellnitz and A. Hohmann, The computation of unstable manifolds using subdivision and continuation, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl. 19, H. W. Broer, S. A. van Gils, I. Hoveijn, and F. Takens, eds., Birkhäuser, Basel, 1996, pp. 449–459.

    Google Scholar 

  6. M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75 (1997), pp. 293–317.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7 (1997), p. 221.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Dellnitz and O. Junge, Almost invariant sets in Chua’s circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), pp. 2475–2485.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of at-tractors and invariant measures, Comput. Visual. Sci., 1 (1998), pp. 63–68.

    Article  MATH  Google Scholar 

  10. J. Ding, Q. Du, and T. Y. Li, High order approximation of the Frobenius-Perron operator, Appl. Math. Comput., 53 (1993), pp. 151–171.

    MathSciNet  MATH  Google Scholar 

  11. J. L. Door, Stochastic Processes, John Wiley, New York, 1960.

    Google Scholar 

  12. M. Eidenschink, Exploring Global Dynamics: A Numerical Algorithm Based on the Conley Index Theory, Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 1995.

    Google Scholar 

  13. R. Guder, M. Dellnitz, and E. kreuzer, An adaptive method for the approximation of the generalized cell mapping, Chaos Solitons Fractals, 8 (1997), pp. 525–534.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Hsu, Global analysis by cell mapping, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992), pp. 727–771.

    Article  MATH  Google Scholar 

  15. F. Y. Hunt, Approximating the invariant measures of randomly perturbed dissipative maps, J. Math. Anal. Appl., 198 (1996), pp. 534–551.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Khibnik, D. Roose, and L. O. Chua, On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth nonlinearity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3 (1993), pp. 363–384.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu. Kifer, General random perturbations of hyperbolic and expanding transformations, J. Anal. Math., 47 (1986), pp. 111–150.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu. Kifer, Random Perturbations of Dynamical Systems, Birkhäuser, Basel, 1988.

    Book  MATH  Google Scholar 

  19. Yu. Kifer, Computations in dynamical systems via random perturbations, Discrete Continuous Dynam. Systems, 3 (1997), pp. 457–476.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Kreuzer, Numerische Untersuchung nichtlinearer dynamischer Systeme, Springer-Verlag, New York, 1987.

    Book  MATH  Google Scholar 

  21. A. Lasota and M. C. Mackey, Chaos, Fractals and Noise, Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  22. R. B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration, Rice University Technical Report TR95–13, Houston, TX, 1995.

    Google Scholar 

  23. T. Matsumoto, L. O. Chua, and M. Komuro, The double scroll, IEEE Trans. Circuits Systems, 32 (1985), pp. 797–818.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  25. J. E. Osborn, Spectral approximation for compact operators,Math. Comp., 29 (1975), pp. 712725.

    Google Scholar 

  26. D. Ruelle, A measure associated with axiom a attractors,Amer. J. Math., 98 (1976), pp. 619654.

    Google Scholar 

  27. Y. G. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys, 166 (1972), pp. 21–69.

    Google Scholar 

  28. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dellnitz, M., Junge, O. (1999). On the Approximation of Complicated Dynamical Behavior. In: Hunt, B.R., Li, TY., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21830-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21830-4_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2330-1

  • Online ISBN: 978-0-387-21830-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics