Skip to main content

The Dimension of Chaotic Attractors

  • Chapter
The Theory of Chaotic Attractors

Abstract

Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on the frequency with which a typical trajectory visits different regions of the attractor. Both our example and the previous work that we review support the conclusion that all of the frequency dependent dimensions take on the same value, which we call the “dimension of the natural measure”, and all of the metric dimensions take on a common value, which we call the “fractal dimension”. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Shaw, “Strange Attractors, Chaotic Behavior, and Information Flow”, Z. Naturforsch. 36a (1981) 80.

    MathSciNet  MATH  Google Scholar 

  2. E. Ott, “Strange Attractors and Chaotic Motions of Dynamical Systems”, Rev. Mod. Phys. 53 (1981) 655.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Heileman, “Self-Generated Chaotic Behavior in Nonlinear Mechanics”, Fundamental Problems in Stat. Mech.5, E.G.D. Cohen, ed. ( North-Holland, Amsterdam and New York, 1980 ) 165–233.

    Google Scholar 

  4. J.A. Yorke and E.D. Yorke, “Chaotic Bahavior and Fluid Dynamics”, Hydrodynamic Instabilities and the Transition to Turbulence, H.L. Swinney and J.P. Gollub eds., Topics in Applied Physics 45 ( Springer, Berlin, 1981 ) pp. 77–95.

    Book  Google Scholar 

  5. B. Mandelbrot, Fractals: Form, Chance, and Dimension ( Freeman, San Francisco, 1977 ).

    MATH  Google Scholar 

  6. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982.)

    Google Scholar 

  7. Ja. Sinai, “Gibbs Measure in Ergodic Theory”, Russ. Math. Surveys 4 (1972) 21–64.

    Article  MathSciNet  Google Scholar 

  8. P. Frederickson, J. Kaplan, E. Yorke, and J. Yorke, “The Lyapunov Dimension of Strange Attractors”, J. Diff. Eqns. in press.

    Google Scholar 

  9. J.D. Farmer, “Dimension, Fractal Measures, and Chaotic Dynamics”, Evolution of Order and Chaos, H. Haken, ed., ( Springer, Berlin, 1982 ), p. 228.

    Google Scholar 

  10. J.D. Farmer, “Information Dimension and the Probabilistic Structure of Chaos”, first chapter of UCSC doctoral disseration (1981) and Z. Naturforsch. 37a (1982) 1304–1325.

    MathSciNet  Google Scholar 

  11. J. Alexander and J. Yorke, “The Fat Baker’s Transformation”, U. of Maryland preprint (1982).

    Google Scholar 

  12. L.S. Young, “Dimension, Entropy, and Lyapunov Exponents”, to appear in Ergodic Theory and Dynamical Systems.

    Google Scholar 

  13. W. Hurwicz and H. Waltman, Dimension Theory (Princeton Univ. Press, Princeton, 1948 ).

    Google Scholar 

  14. A.N. Kolmogroov, “A New Invariant for Transitive Dynamical Systems”, Dokl. Akad. Nauk SSSR 119 (1958) 861–864.

    MathSciNet  Google Scholar 

  15. Hausdorff, “Dimension und Außeres Mar”, Math. Annalen. 79 (1918) 157.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Bowen and D. Ruelle, “The Ergodic Theory of Axiom-A Flows”, Inv. Math. 29 (1975) 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Balatoni and A. Renyi, Publ. Math. Inst. of the Hungarian Acad. of Sci. 1 (1956) 9 (Hungarian). English translation, Selected Papers of A. Renyi, vol. 1 (Academiai Budapest, Budapest, 1976), p. 558. See also A. Renyi, Acta Mathematica (Hungary) 10 (1959) 193.

    Google Scholar 

  18. C. Shannon, “A Mathematical Theory of Communication”, Bell Tech. Jour. 27 (1948) 379–423, 623–656.

    Google Scholar 

  19. F. Ledrappier, “Some Relations Between Dimension and Lyapunov Exponents” Comm. Math. Phys. 81 (1981) 229–238.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Takens, “Invariants Related to Dimension and Entropy”, to appear in Atas do 13 Colognio Brasiliero de Mathematica.

    Google Scholar 

  21. T. Janssen and J. Tjon, “Bifurcations of Lattice Structure”, Univ. of Utrecht preprint (1982).

    Google Scholar 

  22. J. Kaplan and J. Yorke, Functional Differential Equations and the Approximation of Fixed Points, Proceedings, Bonn, July 1978, Lecture Notes in Math. 730, H.O. Peitgen and H.O. Walther, eds., ( Springer, Berlin, 1978 ), p. 228.

    Google Scholar 

  23. H. Mori, “frog. Theor. Phys. 63 (1980) 3.

    Google Scholar 

  24. V.I. Oseledec, “A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers for Dynamical Systems”, Trans. Moscow Math. Soc. 19 (1968) 197.

    MathSciNet  Google Scholar 

  25. C. Grebogi, E. Ott, and J. Yorke, “Chaotic Attractors in Crisis”, in this volume.

    Google Scholar 

  26. A. Douady and J. Oesterle, “Dimension de Hausdorff des Attracteurs, Comptes Rendus des Seances de L’academie des Sciences 24 (1980) 1135–38.

    MathSciNet  Google Scholar 

  27. A.N. Kolmogorov, Dolk. Akad. Nauk SSSR 124 (1959) 754. English summary in MR 21, 2035.

    Google Scholar 

  28. Ya. G. Sinai, Dolk. Akad. Nauk SSSR 124 (1959) 768. English summary in MR 21, 2036.

    Google Scholar 

  29. J. Crutchfield and N. Packard, “Symbolic Dynamics of One-Dimensional Maps: Entropies, Finite Precision, and Noise”, Int’l. J. Theo. Phys. 21 (1982) 433.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Pelikan, private communication.

    Google Scholar 

  31. P. Billingsley, Ergodic Theory and Information, New York, 1%5).

    Google Scholar 

  32. I.J. Good, “The Fractional Dimensional Theory of Continued Fractions”, Proc. Camb. Phil. Soc. 37 (1941) 199–228.

    Article  MathSciNet  Google Scholar 

  33. H.G. Eggleston, “The Fractional Dimension of a Set Defined by Decimal Properties”, Quart. J. Math. Oxford Ser. 20 (1949) 31–36.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Besicovitch, “On the Sum of Digits of Real Numbers Represented in the Dyadic System”, Math. Annalen. 110 (1934) 321.

    Article  MathSciNet  Google Scholar 

  35. J.L. Kaplan, J. Mallet-Paret, and J.A. Yorke, “The Lyapunov Dimension of a Nowhere Differentiable Attracting Torus”, Univ. of Maryland Preprint (1982).

    Google Scholar 

  36. V.I. Arnold and Avez, Ergodic Theory in Classical Mechanics (New York, 1968 ).

    Google Scholar 

  37. D. Russel, J. Hansen, and E. Ott, “Dimensionality and Lyapunov Numbers of Strange Attractors”, Phys. Rev. Lett. 45 (1980) 1175.

    Google Scholar 

  38. J.D. Farmer, “Chaotic Attractors of an Infinite Dimensional Dynamical System”, Physica 4D (1982) 366–393.

    MathSciNet  MATH  Google Scholar 

  39. H. Greenside, A. Wolf, J. Swift, and T. Pignataro, “The Impracticality of a Box Counting Algorithm for Calculating the Dimensionality of Strange Attractors”, Phys. Rev. A25 (1982) 3453.

    Article  MathSciNet  Google Scholar 

  40. H. Froehling, J. Crutchfield, J.D. Farmer, N. Packard, and R. Shaw, “On Determining the Dimension of Chaotic Flows”, Physica 3D (1981) 605.

    MathSciNet  MATH  Google Scholar 

  41. R. Kautz, private communication.

    Google Scholar 

  42. A.J. Chorin, “The Evolution of a Turbulent Vortex”, Comm. Math. Phys. 83 (1982) 517–535.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Bennetin, L. Galgani and J. Strelcyn, Phys. Rev. A 14 (1976) 2338; also see G. Benettin, L. Galgani, A. Giorgilli and J. Strelcyn, Meccanica 15 (1980) 9.

    Google Scholar 

  44. I. Shimada and T. Nagashima, Prog. Theor. Phys. 61 (1979) 228.

    Article  MathSciNet  Google Scholar 

  45. B.B. Mandelbrot, “Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier”. J. Fluid Mechanics 62 (1974) 331–358. See 351, 354 for a discussion of a frequency dependent dimension.

    Google Scholar 

  46. B.B. Mandelbrot, “Fractals and turbulence: attractors and dispersion”. Turbulence Seminar, Berkeley 1976/7. Lecture Notes in Mathematics 615, 83–93 (Springer, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farmer, J.D., Ott, E., Yorke, J.A. (1983). The Dimension of Chaotic Attractors. In: Hunt, B.R., Li, TY., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21830-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21830-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2330-1

  • Online ISBN: 978-0-387-21830-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics