Skip to main content

Fractional Rheology

  • Chapter
Physics of Fractal Operators

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

Rheology is concerned with the flow and deformation of material Traditionally it is the study of the behavior of material bodies treated as continuous media rather than as aggregates of interacting particles. The macroscopic equations of motion can, in principle, be obtained by coarse-graining the microscopic force laws, much as the Navier-Stokes equations of classical hydrodynamics are obtained by averaging the microscopic momentum equations of the individual particles in a fluid. The macroscopic equations are not as simple for a solid as they are for a liquid in that the symmetry, compressibility, and temperature properties are quite different in the two cases. These differences and others are due to the fact that the interactions among the particles are strong and long-range in a solid and the interactions among the particles are weaker and shorter-range in a liquid. The theoretical difficulties in constructing the averages necessary to go from the microscopic to the macroscopic domains are quite interesting, but their pursuit would lead us too far afield. Therefore we restrict our discussion to the classical models of the 19th century and use phenomenological arguments to generalize the traditional rheological equations to the fractional calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York (1962).

    MATH  Google Scholar 

  2. W. N. Findley, J. S. Lai and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York (1976).

    MATH  Google Scholar 

  3. P. Garbaczewski, in Chaos-The Interplay between Stochastic and Deterministic Behavior, P. Garbaczewski, M. Wolf and A. Weron, eds., Springer-Verlag, Berlin (1995).

    Chapter  Google Scholar 

  4. W. G. Glöekle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics, Biophys. J. 68, 46–53 (1995).

    Article  ADS  Google Scholar 

  5. W. G. Glöekle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes, J. Stat. Phys. 71 (1993) 741.

    Article  ADS  Google Scholar 

  6. W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle, Rheol. Acta 33 (1994) 337.

    Article  Google Scholar 

  7. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition, Academic, New York (1980).

    Google Scholar 

  8. M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1959).

    MATH  Google Scholar 

  9. M. Köpf, R. Metzler, O. Haferkamp and T. F. Nonnenmacher, NMR Studier of Anomalous Diffusion in Biological Tissue: Experimental Observations of Lévy Stable Processes, in Fractals in Biology and Medicine, vol. II, G. A. Losa, D. Merlini, T. R. Nonnenmacher and E. R. Weibel, eds., Birkhäuser, Basel (1998).

    Google Scholar 

  10. D. Kusnezov, A. Bulgac and G. D. Dang, Phys. Rev. Lett 82, 1136 (1999).

    Article  ADS  Google Scholar 

  11. N. Laskin, Fractional Quantum Mechanics and Lévy Path Integrals, preprint.

    Google Scholar 

  12. R. Metzler, W. G. Glöekle, T. F. Nonnenmacher and B. J. West, Fractional tuning of the Riccati equation, Fractals 5, 597 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Montroll, On the quantum analogue of the Lévy distribution, in Physical Reality and Mathematical Description, C. Mehra, M. Reidel, eds., Dordrecht, The Netherlands, 501–508 (1974).

    Chapter  Google Scholar 

  14. T. F. Nonnenmacher and R. Metzler, Fractals 3, 557 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. G. Nutting, J. Franklin Inst. 191, 679 (1921).

    Article  Google Scholar 

  16. P. G. Nutting, Proc. Am. Soc. Test. Mater. 21, 1162 (1921).

    Google Scholar 

  17. Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics, MIR, Moscow (1980).

    MATH  Google Scholar 

  18. H. Schiessel, R. Metzler, A. Blumen and T. F. Nonnenmacher, Generalized viscoelastic models: their fractional equations with solutions, J. Phys.: Math. Gen. 28, 6567–84 (1995).

    Article  ADS  MATH  Google Scholar 

  19. G. W. Scott Blair, B. C. Veinoglou and J. E. Caffyn, Limitations of the Newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-properties, Proc. Roy. Soc. Ser. A 187, 69 (1947).

    ADS  Google Scholar 

  20. G. W. Scott Blair, A Survey of General and Applied Rheology, Pitman, London (1949).

    MATH  Google Scholar 

  21. R. K. Schofield and W. G. Blair, Proc. R. Soc. A 138, 707 (1932).

    Article  ADS  MATH  Google Scholar 

  22. B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences vol. 7, World Scientific, Singapore (1999).

    MATH  Google Scholar 

  23. B. J. West, Quantum Lévy Propagators, J. Phys. Chem. B 104, 3830 (2000).

    Article  Google Scholar 

  24. F. W. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer Science, World Scientific, Singapore (1986).

    Google Scholar 

  25. N. Wiener, Nonlinear Problems in Random Theory, MIT Press, Cambridge, MA (1958).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

West, B.J., Bologna, M., Grigolini, P. (2003). Fractional Rheology. In: Physics of Fractal Operators. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21746-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21746-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3054-5

  • Online ISBN: 978-0-387-21746-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics