Skip to main content

Nondifferentiable Processes

  • Chapter
Physics of Fractal Operators

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

We emphasize at the outset that this is not a traditional text book. The authors do not think that modeling of the complex physical phenomena they have in mind is sufficiently well developed to warrant such a text. On the other hand, this is also not a research monograph, since it lacks the rigor that many would insist on, in such a treatment. So the book falls somewhere in between, resting on a set of lecture notes that have been polished and extended, with the view to providing insight into a new area of investigation in science, particularly in physics. The lectures present techniques from the calculus of fractional derivatives and integrals and fractional stochastic differential equations, but are not intended to form a book about mathematics. Instead of formal mathematics, we emphasize physical interpretation and highlight how to model complex physical phenomena, such as found in the world around us. The use of fractal functions and the applications of fractal operators, such as fractional derivatives and integrals applied to analytic functions, are investigated with a view towards modeling complex physical phenomena. Thus, although the material may appear formal at times, our purpose is to reveal the mechanisms underlying the complexity rather than to obscure them. Therefore we touch lightly on history and philosophy, in addition to physics and mathematics, where we think they can contribute to the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 1 (1982), Aerial Press, Santa Cruz, CA

    Google Scholar 

  2. R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 2 (1983), Aerial Press, Santa Cruz, CA

    Google Scholar 

  3. R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 3 (1985), Aerial Press, Santa Cruz, CA

    Google Scholar 

  4. R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 4 (1988), Aerial Press, Santa Cruz, CA

    MATH  Google Scholar 

  5. P. Allegrini, P. Grigolini and B. J. West, Dynamical approach to Lévy processes, Phys. Rev. E 54, 4760–67 (1996).

    Article  ADS  Google Scholar 

  6. J. Beran, Statistics of Long-Memory Processes, Monographs on Statistics and Applied Probability 61, Chapman & Hall, New York (1994).

    Google Scholar 

  7. M. Berry, Diffractals, J. Phys. A: Math. Gen. 12, 781–797 (1979).

    Article  ADS  Google Scholar 

  8. M. Bologna, P. Grigolini and B. J. West, J. Chem. Phys. (in press, 2002).

    Google Scholar 

  9. L. Boltzmann, Lectures on the Principles of Mechanics, Vol. 1, 66, Leipzig: Barth, (1987,1904).

    Google Scholar 

  10. A. S. Chaves, Fractional diffusion equation to describe Lévy flights, Phys. Lett. A 239, 13 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E 53, 4191 (1996).

    Article  ADS  Google Scholar 

  12. J. L. Doob, The Brownian Movement and Stochastic Equations, Ann. Math. 43, 351 (1942).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6, 504 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi and G. Parisi, North-Holland, Amsterdam (1985).

    Google Scholar 

  15. D. V. Giri, Dirac Delta Functions, unpublished report (1979).

    Google Scholar 

  16. W. G. Glöekle and T. F. Nonnenmacher, Macromolecules 24, 6426 (1991).

    Article  ADS  Google Scholar 

  17. W. G. Glöekle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics, Biophys. J. 68, 46–53 (1995).

    Article  ADS  Google Scholar 

  18. W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes, J. Stat. Phys. 71, 741 (1993).

    Article  ADS  MATH  Google Scholar 

  19. W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle, Rheol. Acta 33, 337 (1994).

    Article  Google Scholar 

  20. P. Grigolini, G. Grosso, G. Pastori-Parravicini, and M. Sparpaglione, Phys. Rev. B27, 7342 (1983).

    ADS  Google Scholar 

  21. P. Grigolini, A. Rocco and B. J. West, Fractional calculus as a macroscopic manifestation of randomness, Phys. Rev. E 59, 2303–2306 (1999).

    Article  ADS  Google Scholar 

  22. J. T. M. Hosking, Fractional Differencing, Biometrika 68, 165–178 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. D. Hughes, Random Walks and Random Environments, Vol. 1: Random Walks, Oxford Science Publications, Clarendon Press, Oxford (1995).

    MATH  Google Scholar 

  24. L. P. Kadanoff, Fractals: Where’s the beef?, Physics Today /Feb., 6 (1986).

    Google Scholar 

  25. C. Lanczos, The Variational Principles of Mechanics, 4th edition, Dover, New York (1970).

    MATH  Google Scholar 

  26. P. Langevin, C.R. Acad. Sci. 530, Paris (1908).

    Google Scholar 

  27. M. H. Lee, Phys. Rev. Lett. 51 (1983) 1227.

    Article  ADS  Google Scholar 

  28. P. Lévy, Calcul des probabilities, Guthier-Villars, Paris (1925);

    Google Scholar 

  29. P. Lévy, Théorie de l’addition des variables aléatoires, Guthier-Paris (1937).

    Google Scholar 

  30. K. Lindenberg and B. J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems, VCH, Berlin (1990).

    MATH  Google Scholar 

  31. K. Lindenberg, K. E. Shuler, V. Seshadre and B. J. West, in Probabilistic Analysis and Related Topics, Vol. 3, A.T. Bharucha-Reid, ed., Academic Press, New York (1983).

    Google Scholar 

  32. B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).

    MATH  Google Scholar 

  33. B. B. Mandelbrot, Fractals, form, chance and dimension, W.H. Freeman, San Francisco (1977).

    MATH  Google Scholar 

  34. P. Meakin, Fractals, scaling and growth far from equilibrium, Cambridge Nonlinear Science Series 5, Cambridge University Press, Cambridge, MA (1998).

    MATH  Google Scholar 

  35. E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam, 61–206 (1987);

    Google Scholar 

  36. E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., first edition (1979).

    Google Scholar 

  37. E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, pp. 1–121, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, Amsterdam (1983).

    Google Scholar 

  38. J. Perrin, Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5–114: Translated by F. Soddy as Brownian Movement and Molecular Reality, Taylor and Francis, London (1925).

    Google Scholar 

  39. L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737 (1926).

    Article  ADS  Google Scholar 

  40. M. Schroeder, Fractals, Chaos, Power Laws, W.H. Freeman, New York (1991).

    MATH  Google Scholar 

  41. W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. M. F. Shlesinger, B. J. West and J. Klafter, Lévy dynamics for enhanced diffusion: an application to turbulence, Phys. Rev. Lett. 58, 1100–03 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  43. G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930).

    Article  ADS  Google Scholar 

  44. L. Van Hove, Physica 21 (1955) 517.

    Article  MathSciNet  MATH  Google Scholar 

  45. P.B. Gove, Ed., Webster’s Third New International Dictionary, G. & C. Merriam, Springfield, Mass. (1981).

    Google Scholar 

  46. B. J. West and W. Deering, Fractal Physiology for Physicists: Lévy Statistics, Phys. Repts. 246, 1–100 (1994).

    Article  ADS  Google Scholar 

  47. B. J. West, P. Grigolini, R. Metzler and T. F. Nonnenmacher, Fractal diffusion and Lévy stable processes, Phys. Rev. E 55, 99 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  48. B. J. West and P. Grigolini, Fractional differences, derivatives and fractal time series, in Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Scientific, Singapore (1998).

    Google Scholar 

  49. B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences Vol. 7, World Scientific, Singapore (1999).

    MATH  Google Scholar 

  50. K. Wilson, The renormalization group and critical phenomena, in Nobel Lectures Physics 1981–1990, World Scientific, New Jersey (1993).

    Google Scholar 

  51. G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics, Chaos 7, 159 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. R. W. Zwanzig, in Lectures in Theoretical Physics, Boulder, III (1960) 106, Interscience, New York, (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

West, B.J., Bologna, M., Grigolini, P. (2003). Nondifferentiable Processes. In: Physics of Fractal Operators. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21746-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21746-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3054-5

  • Online ISBN: 978-0-387-21746-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics