Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 12))

  • 5627 Accesses

Abstract

Many practical problems in engineering and physics lead to eigenvalue problems. Typically, in all these problems, an overdetermined system of equations is given, say n + 1 equations for n unknowns ξ 1, ...,ξ n of the form

$$f\left( {X;\lambda } \right): \equiv \left[ {\begin{array}{*{20}{c}} {{{f}_{1}}\left( {{{\xi }_{1}}, \ldots ,{{\xi }_{n}};\lambda } \right)} \\ \vdots \\ {{{f}_{n}} + \left( {{{\xi }_{1}}, \ldots ,{{\xi }_{n}};\lambda } \right)} \\ \end{array} } \right] = 0$$
(6.0.1)

in which the functions f i also depend on an additional parameter λ. Usually, (6.0.1) has a solution x = [ξ1,...,ξ n ]T only for specific values λ = λ i , i = 1, 2,..., of this parameter. These values λ i are called eigenvalues of the eigenvalue problem (6.0.1) and a corresponding solution x = x i ) of (6.0.1), eigensolution belonging to the eigenvalue λ i .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 6

  • Barth, W., Martin, R. S., Wilkinson, J. H. (1971): Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Contribution II/5 in Wilkinson and Reinsch (1971).

    Google Scholar 

  • Bauer, F. L., Fike, C. T. (1960): Norms and exclusion theorems. Numer. Math. 2, 137–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, F. L., Stoer, J., Witzgall, C. (1961): Absolute and monotonic norms. Numer. Math. 3, 257–264.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowdler, H., Martin, R. S., Wilkinson, J. H. (1971): The Qll and QL algorithms for symmetric matrices. Contribution II/3 in: Wilkinson and Reinsch

    Google Scholar 

  • Bowdler, H. (1971). Bunse, W., Bunse-Gerstner, A. (1985): Numerische Lineare Algebra. Stuttgart: Tcubner.

    Google Scholar 

  • Cullum, J., Willoughby, R. A. (1985): Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Vol. I: Theory, Vol. II: Programs. Progress in Scientific Computing, Vol. 3, 4. Basel: Birkhäuser.

    Google Scholar 

  • Eberlein, P. J. (1971): Solution to the complex eigenproblem by a norm reducing Jacobi type method. Contribution I1/17 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Francis, J. F. G. (1961): The QR transformation. A unitary analogue to the LR transformation. I. Computer J. 4, 265–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Garbow, B. S., et al. (1977): Matrix Eigensystem Computer Routines — EISPACK Guide Extension. Lecture Notes in Computer Science 51. Berlin, Heidelberg, New York: Springer-Verlag.

    Book  Google Scholar 

  • Givens, J. W. (1954): Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory Report ORNL-1574.

    Google Scholar 

  • Golub, G. H., Reinsch, C. (1971): Singular value decomposition and least squares solution. Contribution I/10 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Golub, G. H., Van Loan, C. F. (1983): Matrix Computations. Baltimore: The Johns- Hopkins University Press.

    MATH  Google Scholar 

  • Golub, G. H., Wilkinson, J. H. (1976): Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Review 18, 578–619.

    Article  MathSciNet  MATH  Google Scholar 

  • Householder, A. S. (1964): The Theory of Matrices in Numerical Analysis. New York: Blaisdell.

    MATH  Google Scholar 

  • Kaniel, S. (1966): Estimates for some computational techniques in linear algebra. Math. Comp. 20, 369–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Kielbasinski, A., Schwetlick, H. (1988): Numerische Lineare Algebra. Thun, Frankfurt/M.: Deutsch.

    Google Scholar 

  • Kublanovskaya, V. N. (1961): On some algorithms for the solution of the complete eigenvalue problem. Z. Vycisl. Mat. i Mat. Fiz. 1, 555–570.

    MathSciNet  Google Scholar 

  • Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–282.

    Article  MathSciNet  Google Scholar 

  • Martin, R. S., Peters, G., Wilkinson, J. H. (1971): The QR algorithm for real Hessenberg matrices. Contribution II/14 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Martin, R. S., Reinsch, C., Wilkinson. J. H. (1971): Householder’s tridiagonalization of a symmetric matrix. Contribution 11/2 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Martin, R. S., Wilkinson, J. H. (1971): Reduction of the symmetric eigenproblem Ax = AB.r, and related problems to standard form. Contribution II/10 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Martin, R. S. (1971): Similarity reduction of a general matrix to Hessenberg form. Contribution 11/13 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Moler, C. B.. Stewart, G. W. (1973): An algorithm for generalized matrix eigen-value problems. SIAM J. Numer. Anal. 10, 241–256.

    MathSciNet  MATH  Google Scholar 

  • Paige, C. C. (1971): The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph.D. thesis, London University.

    Google Scholar 

  • Parlett, B. N. (1965): Convergence of the QR algorithm. Numer. Math. 7, 187–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Parlett, B. N. (1980): The Symmetric Eigenvalue Problem. Englewood Cliffs, N.J.: Prentice-Hall.

    MATH  Google Scholar 

  • Parlett, B. N., Poole, W. G. (1973): A geometric theory for the QR. LU and power iterations. SIAM J. Numer. Anal. 10. 389–412.

    Article  MathSciNet  MATH  Google Scholar 

  • Parlett, B. N., Scott, D. S. (1979): The Lanczos algorithm with selective orthogonalization. Math Comp. 33, 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Peters, G., Wilkinson J. H. (1970): Ax = ÀBx and the generalized eigenproblem. SIAM J. Numer. Anal. 7, 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Peters, G. (1971): Eigenvectors of real and complex matrices by LR and QR triangularizations. Contribution 11/15 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Peters, G., (1971): The calculation of specified eigenvectors by inverse iteration. Contribution I1/18 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Rutishauser, H. (1958): Solution of eigenvalue problems with the LR-transformation. Nat. Bur. Standards Appl. Math. Ser. 49. 47–81.

    MathSciNet  Google Scholar 

  • Rutishauser, H. (1971): The Jacobi method for real symmetric matrices. Contribution II/1 in: Wilkinson and Reinsch (1971).

    Google Scholar 

  • Saad, Y. (1980): On the rates of convergence of the Lanczos and the block Lanczos methods. SIAM J. Num. Anal. 17, 687–706.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, H. R., Rutishauser, H., Stiefel, E. (1972): Numerik symmetrischer Matrizen. 2d ed. Stuttgart: Teubner. (English translation: Englewood Cliffs, N.J.: Prentice-Hall (1973).)

    Google Scholar 

  • Smith, B. T., et al. (1976): Matrix eigensystem.s routines — EISPACK Guide. Lecture Notes in Computer Science 6, 2d ed. Berlin, Heidelberg, New York: Springer-Verlag.

    Book  Google Scholar 

  • Stewart, G. W. (1973): Introduction to Matrix Computations. New York, London: Academic Press.

    Google Scholar 

  • Wilkinson, J. (1962): Note on the quadratic convergence of the cyclic Jacobi process. Numer. Math. 4, 296–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkinson, J. (1965): The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Wilkinson, J. (1968): Global convergence of tridiagonal QR algorithm with origin shifts. Linear Algebra and Appl. 1, 409–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Reinsch, C. (1971): Linear Algebra, Handbook for Automatic Computa-

    Google Scholar 

  • tion,Vol. II. Berlin, Heidelberg. New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (2002). Eigenvalue Problems. In: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21738-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21738-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3006-4

  • Online ISBN: 978-0-387-21738-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics