Skip to main content

Paradigms for Computing with Spiking Neurons

  • Chapter
Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Abstract

In this chapter we define for various neural coding schemes formal models of computation in networks of spiking neurons. The main results about the computational power of these models are surveyed. In particular, we compare their computational power with that of common models for artificial neural networks. Some rigorous theoretical results are presented which show that for temporal coding of inputs and outputs certain functions can be computed in a feedforward network of spiking neurons with fewer neurons than in any multi-layer perceptron (i.e., feedforward network of sigmoidal neurons). This chapter also presents a brief survey of the literature on computations in networks of spiking neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M. (1982). Role of the cortical neuron: integrator or coincidence detector? Israel J. Med. Sci., 18: 83–92.

    Google Scholar 

  2. Abeles, M. (1991). Corticonics. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  3. Abeles, M., Bergmann, H., Margalit, E., and Vaadia, E. (1993). Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol., 70 (4), 1629–1638.

    Google Scholar 

  4. Abbott, L. F., Sen, K., Varela, J. A., and Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275: 220–222.

    Article  Google Scholar 

  5. Bienenstock, E. (1995). A model of neocortex. Network, 6: 179–224.

    Article  MATH  Google Scholar 

  6. DasGupta, B. and Schnitger G. (1996). Analog versus discrete neural networks. Neural Computation, 8 (4), 805–818.

    Article  Google Scholar 

  7. Dobrunz, L. and Stevens, C. (1997). Heterogenous release probabilities in hippocampal neurons. Neuron, 18: 995–1008.

    Article  Google Scholar 

  8. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biological Cybernetics, 60: 121–130.

    Article  Google Scholar 

  9. Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P. (1990). Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Computation, 2: 293–307.

    Article  Google Scholar 

  10. Gerstner, W. (1999) Spiking neurons. In: Pulsed Neural Networks, W. Maass and C. Bishop, eds., MIT Press (Cambridge), 3–53.

    Google Scholar 

  11. Gerstner, W. and van Hemmen, J. L. (1992). Associative memory in a network of “spiking” neurons. Network: Computation in Neural Systems, 3: 139–164.

    Article  MATH  Google Scholar 

  12. Gray, C. M., König, P., Engel, A. K., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338: 334–337.

    Article  Google Scholar 

  13. Haefliger, P., Mahowald, M., and Watts, L. (1997). A spike based learning neuron in analog VLSI. Advances in Neural Information Processing Systems, vol. 9, MIT Press, ( Cambridge ), 692–698.

    Google Scholar 

  14. Hopfield, J. J. (1995). Pattern recognition computation using action potential timing for stimulus representation. Nature, 376: 33–36.

    Article  Google Scholar 

  15. Hopfield, J. J., Herz, A. V. M. (1995). Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. Sci. USA, 92: 6655–6662.

    Article  Google Scholar 

  16. Judd, K. T. and Aihara, K. (1993). Pulse propagation networks: A neural network model that uses temporal coding by action potentials. Neural Networks, 6: 203–215.

    Article  Google Scholar 

  17. Kay, J. and Phillips, W. A. (1997). Activation functions, computational goals, and learning rules for local processors with contextual guidance. Neural Computation, 9 (4): 895–910.

    Article  Google Scholar 

  18. Kreiter, A. K. and Singer, W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. The Journal of Neuroscience, 16 (7): 2381–2396.

    Google Scholar 

  19. Kistler, W., Gerstner, W., and van Hemmen, J. L. (1997). Reduction of Hodkin-Huxley equations to a single-variable threshold model. Neural Computation, 9: 1015–1045.

    Article  Google Scholar 

  20. Maass, W. (1996). Lower bounds for the computational power of networks of spiking neurons. Neural Computation, 8 (1): 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  21. Maass, W. (1997). Fast sigmoidal networks via spiking neurons. Neural Computation, 9: 279–304.

    Article  MATH  Google Scholar 

  22. Maass, W. (1997). Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10(9):1659–1671. Extended abstract (with a different title) appeared in: Advances in Neural Information Processing Systems, vol. 9, MIT Press, ( Cambridge ), 211–217.

    Google Scholar 

  23. Maass, W. (1998). A simple model for neural computation with firing rates and firing correlations. Network: Computation in Neural Systems, 9: 1–17.

    Article  Google Scholar 

  24. Maass, W., Schnitger, G., and Sontag, E. (1991). On the computational power of sigmoid versus boolean threshold circuits. Proc. of the 32nd Annual IEEE Symposium on Foundations of Computer Science 1991, 767–776; extended version appeared in: Theoretical Advances in Neural Computation and Learning V. P. Roychowdhury, K. Y. Siu, A. Orlitsky, eds., Kluwer Academic Publishers (Boston, 1994), 127–151.

    Google Scholar 

  25. Maass, W., and Bishop, C., eds. (1999) Pulsed Neural Networks, MIT Press, ( Cambridge ).

    Google Scholar 

  26. Maass, W. and Natschläger, T. (1997). Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding. Network: Computation in Neural Systems8(4):355–372.

    Google Scholar 

  27. Maass, W. and Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation,12(7):16791704.

    Google Scholar 

  28. Maass, W. and Schmitt, M. (1997). On the complexity of learning for spiking neurons with temporal coding. Proc. of the Tenth Annual Conference on Computational Learning TheoryACM, New York, 5461; journal version in Information and Computation 153, 26–46, 1999.

    Google Scholar 

  29. Maass, W. and Sontag, E. D. (2000). Neural systems as nonlinear filters. Neural Computation, 12 (8), 1743–1772.

    Article  Google Scholar 

  30. Maass, W. and Zador, A. (1998). Dynamic stochastic synapses as computational units. Advances in Neural Information Processing Systems vol. 10MIT-Press (Cambridge), 194–200; journal version: Neural Computation11(4), 1999, 903–918.

    Google Scholar 

  31. Markram, H., Lübke, J., Frotscher, M., and Sakman, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275:213 — 215.

    Google Scholar 

  32. Markram, H. and Sakmann, B. (1995). Action potentials propagating back into dendrites triggers changes in efficacy of single-axon synapses between layer V pyramidal neurons. Society for Neuroscience Abstracts21:2007.

    Google Scholar 

  33. Milner, P. M. (1974). A model for visual shape recognition. Psychological Review, 81 (6): 521–535.

    Article  Google Scholar 

  34. Natschläger, T., Maass, W., Sontag, E.D., and Zador, A., (2001). Processing of time series by neural circuits with biologically realistic synaptic dynamics. In Advances in Neural Information Processing Systems 2000 (NIPS ‘2000),volume 13, Cambridge, 2001. MIT Press, to appear.

    Google Scholar 

  35. Natschläger, T. and Ruf, B. (1998). Spatial and temporal pattern analysis via spiking neurons. Network: Computation in Neural Systems, 9 (3): 319–332.

    Article  MATH  Google Scholar 

  36. Petrov, V. V. (1995). Limit Theorems of Probability Theory. Oxford University Press.

    Google Scholar 

  37. Phillips, W. A. and Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20 (4): 657–722.

    Article  Google Scholar 

  38. Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., and Bialek, W. (1997). Spikes - Exploring the Neural Code. MIT Press, ( Cambridge ), MA.

    Google Scholar 

  39. Ruf, B., and Schmitt, M. (1998). Self-organizing maps of spiking neurons using temporal coding. In Computational Neuroscience: Trends in ResearchJ. M. Bower, ed., Plenum Press, New York, 509–514.

    Google Scholar 

  40. Samuelides, M., Thorpe, S., and Veneau, E. (1997). Implementing hebbian learning in a rank-based neural network. Proc. 7th Int. Conference on Artificial Neural Networks - ICANN’97 in Lausanne, Switzerland, Springer, Berlin, 145–150.

    Google Scholar 

  41. Shastri, L. and Ajjanagadde, V. (1993). From simple associations to systematic reasoning: a connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioural and Brain Sciences, 16: 417–494.

    Article  Google Scholar 

  42. Sontag, E. D. (1997). Shattering all sets of “k” points in “general position” requires (k - 1)/2 parameters. Neural Computation,9(2):337348.

    Google Scholar 

  43. Thorpe, S. J. and Imbert, M. (1989). Biological constraints on connectionist models. Connectionism in Perspective. R. Pfeifer, Z. Schreter, F. Fogelman-Soulié, L. Steels, eds. Elsevier, Amsterdam, (1989), 63–92.

    Google Scholar 

  44. Thorpe, S. J. and Gautrais, J. (1997). Rapid visual processing using spike asynchrony. Advances in Neural Information Processing Systemsvol. 9, MIT Press, (Cambridge), MA, 901–907.

    Google Scholar 

  45. Vaadia, E., Aertsen, A., and Nelken, I. (1995). Dynamics of neuronal interactions cannot be explained by neuronal transients. Proc. Royal Soc. of London B261:407–410.

    Google Scholar 

  46. Valiant, L. G. (1994). Circuits of the Mind, Oxford University Press, Oxford.

    MATH  Google Scholar 

  47. von der Malsburg, C. (1981). The correlation theory of brain function. Internal Report 81–2 of the Dept. of Neurobiology of the Max Planck Institute for Biophysical Chemistry in GöttingenGermany. Reprinted in Models of Neural Networks IIDomany et al., eds., Springer, 1994, 95–119.

    Google Scholar 

  48. Watanabe, M., and Aihara, K. (1997). Chaos in neural networks composed of coincidence detector neurons. Neural Networks,10(8), 13531359.

    Google Scholar 

  49. Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysics Journal12:1–24.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maass, W. (2002). Paradigms for Computing with Spiking Neurons. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics