Skip to main content

Controlling the Focus of Visual Selective Attention

  • Chapter
Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Abstract

Selecting only a subset of the available sensory information before further detailed processing is crucial for efficient perception. In the visual modality, this selection is frequently implemented by suppressing information outside a spatially circumscribed region of the visual field, the so-called “focus of attention.” The model for the control of the focus of attention in primates presented here is based on a “Saliency Map” which is a topographic representation of the instantaneous saliency of the visual scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Adelson, C.H. Anderson, J.R. Bergen, P.J. Burt, and J.M. Ogden. Pyramid methods in image processing. RCA Engineer, Nov-Dec., 1984.

    Google Scholar 

  2. S. Ahmad and S. Omohundro. Efficient visual search: a connectionist solution. Proc. 13th Ann. Conf. Cog. Sci. Soc. 1991.

    Google Scholar 

  3. J. A. Brefczynski and E. A. DeYoe. A physiological correlate of the spotlight of visual attention. Nature Neuroscience, 2: 370–374, 1999.

    Article  Google Scholar 

  4. G. Buchsbaum and A. Gottschalk. Trichomacy, opponent colour coding and optimum colour information transmission in the retina. Proceedings of the Royal Society of London B, 220: 89, 1983.

    Article  Google Scholar 

  5. M. C. Bushnell, M. E. Goldberg, and D. L. Robinson. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol., 46: 755–772, 1981.

    Google Scholar 

  6. J. Braun. Visual search among items of different salience: removal of visual attention mimics a lesion in extrastriate area V4. J. Neuroscience, 14: 554–567, 1994.

    Google Scholar 

  7. D. E. Broadbent. Perception and Communication. Pergamon, London, 1958.

    Book  Google Scholar 

  8. J. Braun and D. Sagi. Vision outside the focus of attention. Perception and Psychophysics, 48: 45–58, 1990.

    Article  Google Scholar 

  9. J. Braun and D. Sagi. Texture-based tasks are little affected by second tasks requiring peripheral or central attentive fixation. Perception, 20: 483–500, 1991.

    Article  Google Scholar 

  10. A. J. Bell and T. J. Sejnowski. The independent components of natural scenes are edge filters. Vision Research, 37: 3327–3338, 1999.

    Article  Google Scholar 

  11. C. Bundesen. Visual selection of features and objects: is location special? a reinterpretation of Nissen’s (1985) findings. Perception é4 Psychophysics, 50: 87–89, 1991.

    Article  Google Scholar 

  12. M. Carandini and D.J. Heeger. Summation and division by neurons in primate visual cortex. Science, 264: 1333–1336, 1994.

    Article  Google Scholar 

  13. F. Crick and C. Koch. Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2: 263–275, 1990.

    Google Scholar 

  14. L. Chelazzi, E.K. Miller, A. Lueschow, and R. Desimone. Dual mechanisms of short-term memory: ventral prefrontal cortex. Soc. for Neuroscience Abstracts, 19: 975, 1993.

    Google Scholar 

  15. R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Ann. Rev. Of Neurosci., 18: 193–222, 1995.

    Article  Google Scholar 

  16. R. Desimone. Neural circuits for visual attention in the primate brain. In G. Carpenter and S. Grossberg, editors, Neural Networks for Vision and Image Processing. MIT Press, Cambridge, 1992.

    Google Scholar 

  17. S. Danziger, A. Kingstone, and J. Snyder Inhibition of return to successively stimulated locations in a sequential visual search paradigm. Journal of Experimental Psychology: Human Perception and Performance, 24(5): 1467–75, Oct 1998.

    Google Scholar 

  18. J. Duncan, R. Ward, and K. Shapiro. Direct measurement of attentional dwell time in human vision. Nature, 369: 313–315, 1994.

    Article  Google Scholar 

  19. A. K. Engel, P. König, Kreiter A.K., T. B. Schillen, and W. Singer. Temporal coding in the visual system: new vistas on integration in the nervous system. Trends in Neurociences, 15: 218–226, 1992.

    Article  Google Scholar 

  20. H.E. Egeth, R.A. Virzi, and H. Garbart. Searching for conjunctively defined targets. J. Experimental Psychology, 10 (1): 32–39, 1984.

    Google Scholar 

  21. S. R. Friedman-Hill, L. C. Robertson, and A. Treisman. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science, 269: 853–855, 1995.

    Article  Google Scholar 

  22. K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13 (5): 826–834, 1983.

    Google Scholar 

  23. B. Fischer and E. Ramsperger. Human express-saccades: extremely short reaction times of goal directed eye movements. Experimental Brain Research, 57: 191–195, 1984.

    Article  Google Scholar 

  24. B. Fischer and H. Weber. Express saccades and visual attention. Behavioral and Brain Sciences, 16: 553–610, 1993.

    Article  Google Scholar 

  25. M.S. Gazzaniga. Independent hemispheric attentional systems mediate visual search in split-brain patients. Nature, 342: 543–545, 1989.

    Article  Google Scholar 

  26. H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C.H. Anderson. Overcomplete steerable pyramid filters and rotation invariance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1994.

    Google Scholar 

  27. J. L. Gallant, C. E. Connor, H. Drury, and D. C. Van Essen. Neural responses in monkey visual cortex during free viewing of natural scenes — mechanisms of response suppression. Investigative Ophthalmology and Visual Science, 36 (4): S10–52, 1995.

    Google Scholar 

  28. J. L. Gallant, C. E. Connor, and D. C. Van Essen. Neural activity in areas vl, v2 and v4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9 (9): 2153–2158, 1998.

    Article  Google Scholar 

  29. B.S. Gibson and H. Egeth Inhibition of return to object-based and environment-based locations. Perception é4 Psychophysics, 55(3): 323–339, 1994.

    Google Scholar 

  30. S. Grossberg, E. Mingolla, and W.D. Ross. A neural theory of attentive visual search: interactions at boundary, surface, spatial and object recognition. Psychological Review, 101 (3): 470–489, 1994.

    Article  Google Scholar 

  31. M. E. Goldberg and R. H. Wurtz. Activity of superior colliculus in behaving monkey II: The effect of attention on neuronal responses. J. Neurophysiology, 35 (560–574), 1972.

    Google Scholar 

  32. H. von Helmholtz. Handbuch der physiologischen Optik. Voss, Leipzig, 1867.

    Google Scholar 

  33. G.W. Humphreys and H.J. Müller. Search via recursive rejection (SERR): A connectionist model of visual search. Cognitive Psychology, 25: 43–110, 1993.

    Article  Google Scholar 

  34. J. E. Hoffman. Search through a sequentially presented visual display. Perception é4 Psychophysics, 23 (1): 1–11, 1978.

    Article  Google Scholar 

  35. J. E. Hoffman. A two-stage model of visual search. Perception é4 Psychophysics, 2325 (4): 319–327, 1979.

    Article  Google Scholar 

  36. T. S. Horowitz and J. M. Wolfe. Visual search has not memory. Nature, 394: 575–577, 1998.

    Article  Google Scholar 

  37. L. Itti, E. Niebur, and C. Koch. A model of saliency-based fast visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (11): 1254–1259, November 1998.

    Article  Google Scholar 

  38. S. R. Jackson, R. Marrocco, and M. I. Posner. Networks of anatomical areas controlling visuospatial attention. Neural Networks, 7 (6/7): 925–944, 1994.

    Article  Google Scholar 

  39. H. Kwak and H. Egeth. Consequences of allocating attention to locations and to other attributes. Perception é4 Psychophysics, 51 (5): 455–464, 1992.

    Article  Google Scholar 

  40. P. König, A. K. Engel, S. Löwel, and W. Singer. How precise is neuronal synchronization? Neural Computation, 7 (3): 469–485, 1995.

    Article  Google Scholar 

  41. C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol., 4: 219–227, 1985.

    Google Scholar 

  42. M. F. Land and S. Furneaux. The knowledge base of the oculomotor system. Philosophical Transactions of the Royal Society of London B, 352 (1358): 1231–1239, 1997.

    Article  Google Scholar 

  43. S.J. Luck, S.A. Hillyard, G.R. Mangun, and M.S. Gazzaniga. Independent attentional scanning in the separated hemispheres of split-brain patients. J. Cog. Neurosci, 6 (1): 84–91, 1994.

    Article  Google Scholar 

  44. A. Lüschow and H. C. Nothdurft. Pop-out of orientation but no pop-out of motion at iso-luminance. Vision Res., 33: 91–104, 1993.

    Article  Google Scholar 

  45. M. B. Law, J. Pratt, and R. A. Abrams Color-based inhibition of return. Perception & Psychophysics, 57 (3): 402–408, 1995.

    Article  Google Scholar 

  46. V. B. Mountcastle, R. A. Andersen, and B. C. Motter. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci., 1: 1218–1232, 1981.

    Google Scholar 

  47. R. Milanese, J.M. Bost, and T. Pun. Visual indexing with an attentive system. In Lecture Notes in Artificial Intelligence, pages 415–419. Springer Verlag, Berlin, 1991.

    Google Scholar 

  48. E. A. Maylor and R. Hockey. Inhibitory components of externally controlled covert orienting in visual space. Journal of Experimental Psychology: Human Perception and Performance, 11: 777–787, 1985.

    Article  Google Scholar 

  49. M. Mackeben and K. Nakayama. Express attentional shifts. Vision Research, 33: 85–90, 1993.

    Article  Google Scholar 

  50. I. R. Moorhead. Human colour vision and natural images. In Colour in Information Technology and Information Displays, number 61, page 21. Institution of Electronic and Radio Engineers, Alderman, Ipswich, 1985.

    Google Scholar 

  51. V. B. Mountcastle. The parietal system and some higher brain functions. Cerebral Cortex, 5 (5): 377–390, 1995.

    Article  Google Scholar 

  52. R. Milanese, T Pun, and H. Wechsler. A non-linear integration process for the selection of visual information. In V. Roberto, editor, Intelligent Perceptual Systems, pages 323–336. Springer Verlag, Berlin, 1993.

    Google Scholar 

  53. J.T. Mordkoff, S. Yantis, and H.E. Egeth. Detecting conjunctions of color and form in parallel. Perception €? Psychophysics, 48 (2): 157–168, 1990.

    Article  Google Scholar 

  54. U. Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York, 1967.

    Google Scholar 

  55. H. C. Nothdurft, J. L. Gallant, and D. C.N Van Essen. Response modulation by texture surround in primate area Vl: correlates of “popout” under anesthesia. Visual Neuroscience, 16 (1): 15–34, Jan-Feb 1999.

    Google Scholar 

  56. M.J. Nissen. Accessing features and objects: is location special? In M.I. Posner and O.S.M Marin, editors, Mechanisms of attention: Attention and Performance XI, pages 205–219. Hillsdale, NJ, 1985.

    Google Scholar 

  57. E. Niebur and C. Koch. A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience, 1 (1): 141–158, 1994.

    Article  Google Scholar 

  58. E. Niebur and C. Koch. Control of selective visual attention: Modeling the “where” pathway. In D. S Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 802–808. MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  59. E. Niebur and C. Koch. Computational architectures for attention. In R. Parasuraman, editor, The Attentive Brain, chapter 9, pages 163–186. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  60. E. Niebur, C. Koch, and C. Rosin. An oscillation-based model for the neural basis of attention. Vision Research, 33: 2789–2802, 1993.

    Article  Google Scholar 

  61. H. C. Nothdurft. Feature analysis and the role of similarity in preattentive vision. Perception e4 Psychophysics, 52: 355–375, 1992.

    Article  Google Scholar 

  62. H. C. Nothdurft. The role of features in preattentive vision: comparison of orientation, motion and color cues. Vision Res., 33: 1937–1958, 1993.

    Article  Google Scholar 

  63. H. C. Nothdurft. Saliency effects across dimensions in visual search. Vision Res., 33: 839–844, 1993.

    Article  Google Scholar 

  64. D. Noton and L. Stark. Scanpaths in eye movements. Science, 171: 308–311, 1971.

    Article  Google Scholar 

  65. B. Olshausen, C. Andersen, and D. Van Essen. A neural model of visual attention and invariant pattern recognition. J. Neuroscience, 13 (11): 4700–4719, 1993.

    Google Scholar 

  66. B. Olshausen and D. J. Fields. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381: 607–609, 1996.

    Article  Google Scholar 

  67. C. Olson and S. Gettner. Object-centered direction selectivity in the macaque supplementary eye field. Science, 269: 985–988, August 1995.

    Article  Google Scholar 

  68. J. Palmer. Set-size effects in visual search: the effect of attention is independent of the stimulus for simple tasks. Vision Res., 34: 17031–721, 1994.

    Article  Google Scholar 

  69. M. I. Posner and Y. Cohen. Components of visual orienting. In H. Bouma and D. G. Bouwhuis, editors, Attention and Performance X, pages 531–556. Hilldale, NJ, 1984.

    Google Scholar 

  70. M.I. Posner. Orienting of attention. Quart. J. Exp. Psychol., 32: 325, 1980.

    Article  Google Scholar 

  71. D. L. Robinson and S. E. Petersen. The pulvinar and visual salience. Trends in Neurociences, 15 (4): 127–132, 1992.

    Article  Google Scholar 

  72. R. P. N. Rao, G. J. Zelinsky, M. M. Hayhoe, and D. H. Ballard. Eye movements in visual cognition: a computational study. Technical Report 97.1, Department of Computer Science, University of Rochester, March 1997.

    Google Scholar 

  73. P.A. Sandon. An attentional hierarchy. Behavioral and Brain Sciences, 12: 414–415, 1989.

    Article  Google Scholar 

  74. M. A. Steinmetz and C. Constantinidis. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cerebral Cortex, 5: 448–456, 1995.

    Article  Google Scholar 

  75. M. A. Steinmetz, C. E. Connor, C. Constantinidis, and J. R. McLaughlin. Covert attention suppresses neuronal responses in area 7A of the posterior parietal cortex. J. Neurophysiology, 72: 1020–1023, 1994.

    Google Scholar 

  76. J. Saarinen and B. Julesz. The speed of attentional shifts in the visual field. Proc. Nat. Acad. Sci., USA, 88: 1812–1814, 1991.

    Article  Google Scholar 

  77. S. Shih and G. Sperling. Visual search, visual attention and feature-based stimulus selection. Investigative Ophthalmology and Visual Science, 34 (4): 1288, 1993.

    Google Scholar 

  78. G.W. Strong and B.A. Whitehead. A solution to the tag-assignment problem for neural networks. Beh. Brain Sci., 12: 381–433, 1989.

    Article  Google Scholar 

  79. A. Toet, P. Bijl, F. L. Kooi, and J. M. Valenton. A High-Resolution Image Dataset for Testing Search and Detection Models (TNO-TM98–A020). TNO Human Factors Research Institute, Soesterberg, The Netherlands, 1998.

    Google Scholar 

  80. S. P. Tipper, J. Driver, and B. Weaver. Short report: object-centered inhibition or return of visual attention. Quarterly Journal of Exp. Psychology, 43A: 289–298, 1991.

    Article  Google Scholar 

  81. A. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive Psychology, 12: 97–136, 1980.

    Article  Google Scholar 

  82. Y. Tsal and N. Lavie. Location dominance in attending to color and shape. Journal of Experimental Psychology: Human Perception and Performance, 19 (1): 131–139, 1993.

    Article  Google Scholar 

  83. A. Treisman. Features and objects: the fourteenth Bartlett memorial lecture. Quart. J. Exp. Psychol., 40A: 201–237, 1988.

    Article  Google Scholar 

  84. M. Usher and E. Niebur. A neural model for parallel, expectation-driven attention for objects. J. Cognitive Neuroscience, 8 (3): 305–321, 1996.

    Article  Google Scholar 

  85. J.M. Wolfe, K.R. Cave, and S.L. Franzel. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychology, 15: 419–433, 1989.

    Google Scholar 

  86. J.M. Wolfe, S.R. Friedman-Hill, and A.B. Bilsky. Parallel processing of part-whole information in visual search tasks. Perception é4 Psychophysics, 55: 537–550, 1994.

    Article  Google Scholar 

  87. D. G. Watson and G. W. Humphreys. Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104 (1): 90–122, 1997.

    Article  Google Scholar 

  88. J.M. Wolfe. Guided search 2.0-a revised model of visual search. Psychonomics Bulletin hi Review, 1 (2): 202–238, 1994.

    Article  Google Scholar 

  89. A.L. Yarbus. Eye Movements and Vision. Plenum Press, New York, 1967.

    Google Scholar 

  90. A. L. Yuille and N. M. Grzywacz. A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Computation, 2: 334–344, 1989.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niebur, E., Itti, L., Koch, C. (2002). Controlling the Focus of Visual Selective Attention. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics