Skip to main content

Figure-Ground Segregation and Brightness Perception at Illusory Contours: A Neuronal Model

  • Chapter
Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

  • 304 Accesses

Abstract

It has been shown in animals and man that illusory contours are represented at an early stage of visual processing. Animal studies revealed that neurons which signaled illusory contours usually also responded to contrast borders (bars, edges), and that the orientations of these contours are represented in similar cortical maps. In humans, illusory contour representations have been found at a comparable level of processing. Further, evidence of perception suggests that illusory contours often coincide with occluding contours and that mechanisms segregating figure and ground at such contours are also implemented at an early stage of processing. We studied this question in the visual cortex of the alert monkey by recording the responses of single neurons in stimulus conditions which defined illusory contours and the associated step in depth on the basis of occlusion cues (light and dark line-ends, or corners). In area V2, we found neurons sensitive to the figure-ground direction that human observers perceive at such contours. Most neurons showed this sensitivity independent of the contrast polarity that the stimuli induced at the contour, the remainder preferred a certain combination of figure-ground direction and contrast polarity. We explain these results in terms of a computational model using end-stopped operators for the detection of occlusion cues. In computer simulations we show that this model reproduces the figure-ground direction and the contrast polarity that human observers perceive at illusory (occluding) contours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson EH, Bergen JR (1985) Spatio-temporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299.

    Google Scholar 

  2. Baumann R, van der Zwan R, Peterhans E (1997) Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey. Eur J Neurosci 9: 1290–1303.

    Article  Google Scholar 

  3. Bolz J, Gilbert CD, Wiesel TN (1989) Pharmacological analysis of cortical circuitry. Trends Neurosci 12: 292–296.

    Article  Google Scholar 

  4. Coren S (1972) Subjective contours and apparent depth. Psychol Review 79: 359–367.

    Article  Google Scholar 

  5. Daugman JG (1983) Six formal properties of two-dimensional anisotropic visual filters: Structural principles and frequency/orientation selectivity. IEEE Transactions on Systems, Man and Cybernetics 13: 882–887.

    Article  Google Scholar 

  6. Dobbins A, Zucker SW, Cynader MS (1987) Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature (Lond) 329: 438–441.

    Google Scholar 

  7. Dreher B (1972) Hypercomplex cells in the cat’s striate cortex. Invest Ophthalmol 11: 355–356.

    Google Scholar 

  8. Ffytche DH, Zeki S (1996) Brain activity related to the perception of illusory contours. Neuroimage 3: 104–108.

    Article  Google Scholar 

  9. Finkel LH, Edelman GM (1989) Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J Neurosci 9: 3188–3208.

    Google Scholar 

  10. Finkel LH, Sajda P (1992) Object discrimination based on depthfrom-occlusion. Neural Computation 4: 901–921.

    Article  Google Scholar 

  11. Frisby JP, Clatworthy JL (1975) Illusory contours: curious cases of simultaneous brightness contrast? Perception 4: 349–357.

    Article  Google Scholar 

  12. Fukushima K (1970) A feature extractor for curvilinear patterns: A design suggested by the mammalian visual system. Kybernetik 7: 153–160.

    Article  Google Scholar 

  13. Gerrits HJM, Vendrik AJH (1970) Simultaneous contrast filling-in process and information processing in man’s visual system. Exp Brain Res 11: 411–430.

    Article  Google Scholar 

  14. Gilbert CD (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol 268: 391–421.

    Google Scholar 

  15. Gove A, Grossberg S, Mingolla E (1995) Brightness perception illusory contours and corticogeniculate feedback. Visual Neurosci 12: 1027–1052.

    Article  Google Scholar 

  16. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.

    Article  Google Scholar 

  17. Grosof DH, Shapley RM, Hawken MJ (1993) Macaque V1 neurons can signal “illusory” contours. Nature 365: 550–552.

    Article  Google Scholar 

  18. Grossberg S (1997) Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. Psychological Review 3: 618–658.

    Article  Google Scholar 

  19. Hawken MJ, Parker AJ (1987) Spatial properties of neurons in monkey striate cortex. Proc R Soc Lond B 231: 251–288.

    Google Scholar 

  20. Heider B, Meskenaite V, Peterhans E (2000) Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours. Eur J Neurosci 12: 4117–4130.

    Article  Google Scholar 

  21. Heitger F, von der Heydt R (1993) A computational model of neural contour processing: Figure-ground segregation and illusory contours. In: Proc 4th Int Conf Computer Vision, IEEE Computer Society Press, Berlin, pp. 32–40.

    Google Scholar 

  22. Heitger F, Rosenthaler L, von der Heydt R, Peterhans E, Kübler 0 (1992) Simulation of neural contour mechanisms: From simple to end-stopped cells. Vision Res 32: 963–981.

    Google Scholar 

  23. Heitger F, von der Heydt R, Peterhans E, Rosenthaler L, Kühler 0 (1998) Simulation of neural contour mechanisms: Representing anomalous contours. Image and Vision Computing 16: 407–421.

    Google Scholar 

  24. Hirsch J, De La Paz RL, Relkin NR, Victor J, Kim K, Li T, Borden P, Rubin N, Shapley R (1995) Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Proc Nat Acad Sci USA 92: 6469–6473.

    Article  Google Scholar 

  25. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160: 106–154.

    Google Scholar 

  26. Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229–289.

    Google Scholar 

  27. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond) 195: 215–243.

    Google Scholar 

  28. Kanizsa G (1979) Organization in Vision. Essays on Gestalt Perception. Praeger, New York

    Google Scholar 

  29. Kato H, Bishop PO, Orban GA (1978) Hypercomplex and simple/complex cell classification in cat striate cortex. J Neurophysiol 41: 1071–1095.

    Google Scholar 

  30. Kennedy JM (1979) Subjective contours, contrast, and assimilation. In: Nodine CF, Fisher DF (eds) Perception and Pictorial Representation. Praeger, New York, pp. 167–195.

    Google Scholar 

  31. Kulikowski JJ, Marcelja S, Bishop PO (1982) Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biol Cybern 43: 187–198.

    Article  MATH  Google Scholar 

  32. Lesher, GW (1995) Illusory contours: Toward a neurally based perceptual theory. Psychonomic Bulletin and Review, 2: 279–321.

    Article  Google Scholar 

  33. Lesher, GW, Mingolla, E (1993) The role of edges and line-ends in illusory contour formation. Vision Res, 33: 2253–2270.

    Article  Google Scholar 

  34. Leventhal, AG, Zhou, Y (1994) Cat visual cortical cells are sensitive to the orientation and direction of “illusory” contours. Soc for Neurosci Abstract, 20: 1053.

    Google Scholar 

  35. Lourens, T (1998) A biologically plausible model for corner-based object recognition from color images. PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  36. Minguzzi GF (1987) Anomalous figures and the tendency to continuation. In: Petry S, Meyer GE (eds) The Perception of Illusory Contours. Springer, Berlin, pp. 71–75.

    Chapter  Google Scholar 

  37. Morrone MC, Burr DC (1988) Feature detection in human vision: A phase-dependent energy model. Proc R Soc Lond B 235: 221–245.

    Article  Google Scholar 

  38. Nakayama K, Shimojo S (1990) Da Vinci stereopsis: Depth and subjective occluding contours from unpaired image points. Vision Res 30: 1811–1825.

    Article  Google Scholar 

  39. Nakayama K Shimojo S, Silverman G H (1989) Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18: 55–68.

    Article  Google Scholar 

  40. Orban GA, Kato H, Bishop PO (1979) Dimension and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. J Neurophysiol 42: 833–849.

    Google Scholar 

  41. Paradiso MA, Nakayama K (1991) Brightness perception and filling-in. Vision Res 31: 1221–1236.

    Article  Google Scholar 

  42. Peterhans E, Heitger F (2001) Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area V2. J Comput Neurosci (in press).

    Google Scholar 

  43. Peterhans E, von der Heydt R (1989) Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. J Neurosci 9: 1749–1763.

    Google Scholar 

  44. Peterhans E, von der Heydt R (1991) Elements of form perception in monkey prestriate cortex. In: Gorea A, Frégnac Y, Kapoulis Z, Findlay J (eds) Representations of Vision: Trends and Tacit Assumptions. Cambridge University Press, Cambridge, pp. 111–124.

    Google Scholar 

  45. Peterhans E, von der Heydt R, Baumgartner G (1986) Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing. In: Pettigrew JD, Sanderson KJ, Levick WR (eds) Visual Neuroscience. Cambridge University Press, Cambridge, pp. 343–351.

    Google Scholar 

  46. Petry S, Meyer GE (1987) The Perception of Illusory Contours. Springer, Berlin

    Book  Google Scholar 

  47. Prazdny K (1983) Illusory contours are not caused by simultaneous brightness contrast. Perception and Psychophysics 34: 403–404.

    Article  Google Scholar 

  48. Ramachandran VS, Anstis S (1986) Figure-ground segregation modulates apparent motion. Vision Res 26: 1969–1975.

    Article  Google Scholar 

  49. Redies C, Crook J M, Creutzfeldt OD (1986) Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus. Exp Brain Res 61: 469–481.

    Article  Google Scholar 

  50. Rose D (1977) Responses of single units in cat visual cortex to moving bars of light as a function of bar length. J Physiol 271: 1–23.

    Google Scholar 

  51. Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol 39: 1288–1319.

    Google Scholar 

  52. Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours in visual cortex. Science 274: 2110–2115.

    Article  Google Scholar 

  53. Spillmann L, Dresp B (1995) Phenomena of illusory form: can we bridge the gap between levels of explanation? Perception 24: 13331364.

    Google Scholar 

  54. Soriano M, Spillman L, Bach M (1996) The abutting grating illusion. Vision Res 36: 109–116.

    Article  Google Scholar 

  55. van der Zwan R, Baumann R, Peterhans E (1995) End-stopped cells in the visual cortex of the alert monkey. Perception 24: 43.

    Google Scholar 

  56. von der Heydt R, Peterhans E (1989) Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. J Neurosci 9: 1731–1748.

    Google Scholar 

  57. von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224: 1260–1262.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peterhans, E., van der Zwan, R., Heider, B., Heitger, F. (2002). Figure-Ground Segregation and Brightness Perception at Illusory Contours: A Neuronal Model. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics