Skip to main content

Neural Principles of Preattentive Scene Segmentation: Hints from Cortical Recordings, Related Models, and Perception

  • Chapter
Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Abstract

Preattentive segmentation of visual scenes is a prerequisite of object recognition and effective visuomotor coordination. For this the visual system has to specify neural representations of contours and regions of potential relevance so that top-down acting mechanisms of attention, expectation and visual memory can interact with them. This chapter attempts to show how the largely unknown neural mechanisms of scene segmentation may be uncovered. Starting from principles of perceptual grouping, we present experimental results mainly of our own multiple microelectrode recordings from the visual cortex of awake monkeys. Perceptual and experimental hints at principles of scene segmentation are supported by related simulations of spike coding networks of minimal complexity. We follow the hypothesis that fast signal coupling and decoupling among visual cortical circuits define preattentively relations among scene segments. Two properties of scene segments and related signal coupling are differentiated: (1) Transient retinal changes evoke short simultaneous activations that are coarsely synchronized across the entire representation of the changing segments; (2) During ocular fixation stable retinal images induce fast cortical oscillations (FCOs; 30 – 90 Hz) that are phase-correlated along the cortical representation of contours and across segment regions. Phase coupling among FCOs in neighboring cortical populations is weak, distributions of phase differences are symmetrical to zero delay and their width increases with cortical distance. These properties explain the small size of cortical patches over which coherent FCOs have previously been reported. The representation of such a cortical patch in visual space (defined by the superimposed classical receptive fields (cRFs) of the synchronized neurons) is termed here the feature association field (AF). Arguments from experiments and simulations are developed showing that AF size at a lower level of processing can explain the larger cRFs at the next level and hence a stepwise increase in establishing relevant scene relations. In the light of our new data, the previous hypothesis of feature association by synchronization is modified to a hypthesis of coding region, contour and object continuity by phase-continuity, including single event stimulus-locked and rhythmic FCO processes. (This article contains some new unpublished experimental and modeling results.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Nicholls, A.R. Martin, B.G. Wallace: From Neuron to Brain (Sinauer, Sunderland, Massachusetts 1994 ).

    Google Scholar 

  2. E.R. Kandel, J.H. Schwartz: Principles of Neural Science (Elsevier, New York Amsterdam, Oxford 1985 ).

    Google Scholar 

  3. M. Wertheimer: Untersuchungen zur Lehre von der Gestalt: II. Psychologische Forschung 4, 301 (1923).

    Google Scholar 

  4. R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H.J. Reitboeck: Biol. Cybern. 60, 121 (1988).

    Google Scholar 

  5. C.M. Gray, P. König, A.K. Engel, W. Singer: Nature 338, 334 (1989).

    Google Scholar 

  6. H. Neven, and A. Aertsen: Biol. Cybern. 67, 309 (1992).

    Google Scholar 

  7. H. Barlow: in Brain Theory Biological Basis and Computational Principles, edited by A. Aertsen, and V. Braitenberg ( Elsevier, North Holland 1996 ) p. 261.

    Google Scholar 

  8. R. Eckhorn: in Progress in Brain Research 107. The Self-Organizing Brain: From Growth Cones to Functional Networks, edited by J. van Pelt, M.A. Corner, H.B.M. Uylings, F.H. Lopes da Silva ( Elsevier, Amsterdam New York, 1994 ) p. 405

    Google Scholar 

  9. C.M. Gray: J. Comput. Neurosci. 1, 11 (1994).

    Google Scholar 

  10. A. Aertsen, M.A. Arndt: Current Opinion in Neurobiology 3, 586 (1993)

    Google Scholar 

  11. A.M. Aertsen, G.L. Gerstein, M.K. Habib, G. Palm: J. Neurophysiol. 61, 900 (1989).

    Google Scholar 

  12. K.H. Boven, and A. Aertsen: in Parallel Processing in Neural Systems and Computers, edited by R. Eckmiller, G. Hartmann, and G. Hauske ( Elsevier, North Holland 1990 ), p. 53.

    Google Scholar 

  13. M. Abeles: Corticonics. Neural circuits of the cerebral cortex. Cambridge Univ. Press, Cambridge, New York, Melbourne, Sydney. (1991).

    Google Scholar 

  14. L. Martignon, H. von Hasseln, S. Gruen, A. Aertsen, and G. Palm: Biol. Cybernetics 73, 69 (1995).

    MATH  Google Scholar 

  15. E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut, H. Slovin, and A. Aertsen. Nature 373, 515 (1995).

    Google Scholar 

  16. A. Riehle, S. Gruen, M. Diesmann, and A. Aertsen: Science 278, 1950 (1997) .

    Google Scholar 

  17. R. Kempter, W. Gerstner, J.L. van Hemmen, H. Wagner: Neur. Comput. 10, 1987 (1998).

    Google Scholar 

  18. O. Bernander, C. Koch, M. Usher: Neural Comput. 6, 622 (1994).

    Google Scholar 

  19. H. Markram, and M. Tsodyks: Nature 382, 807 (1996)

    Google Scholar 

  20. P. König, A.K. Engel, W. Singer: Proc. Natl. Acad. Sci. USA 92, 290 (1995b).

    Google Scholar 

  21. R. Eckhorn, H.J. Reitboeck, M. Arndt, P. Dicke: Neur. Comput. 2, 293–306 (1990) .

    Google Scholar 

  22. R. Eckhorn: in Proc Artificial Intelligence, Dynamic Perception, edited by S. Prosch, H. Ritter ( Infix, Sankt Augustin 1998 ) p. 127.

    Google Scholar 

  23. C.Y. Li, W. Li: Vision Res. 34, 2337 (1994).

    Google Scholar 

  24. U. Polat, D. Sagi: Vision Res. 33, 993–999 (1993).

    Google Scholar 

  25. D.J. Field, A. Hayes, and R.F. Hess: Vision. Res. 33, 173 (1993).

    Google Scholar 

  26. Y. Fregnac, V. Bringuier, F. Chavane: J. Physiol. (Paris) 90, 367 (1996) .

    Google Scholar 

  27. E. Bienenstock, R. Doursat: in Representation of Vision, edited by A. Gorea et al. ( Cambridge Univ. Press 1991 ) p. 47.

    Google Scholar 

  28. W.A. Phillips, W. Singer: Behavioral Brain Sci. 20, 657 (1997).

    Google Scholar 

  29. L. Spillmann, W.H. Ehrenstein: in Comprehensive Human Physiology, Vol 1, edited by R. Greger, and U. Windhorst ( Springer, Berlin, Heidelberg 1996 ) p. 861.

    Google Scholar 

  30. W. Kruse, R. Eckhorn: Proc. Natl. Acad. Sci. USA 93, 6112 (1996).

    Google Scholar 

  31. E. Juergens, R. Eckhorn: Biol. Cybern. 76, 217 (1997).

    MATH  Google Scholar 

  32. R. Eckhorn, A. Obermueller: Exp. Brain Res. 95, 177 (1993).

    Google Scholar 

  33. A. Frien, R. Eckhorn, R. Bauer, T. Woelbern, H. Kehr: NeuroReport 5, 2273 (1994).

    Google Scholar 

  34. A.P. Georgopoulos: Quantit. Biol. 55, 849 (1990).

    Google Scholar 

  35. E. Zohary, P. Hillman, and S. Hochstein: Biol. Cybernetics 62, 475 (1990) .

    Google Scholar 

  36. M.N. Shadlen, and W.T. Newsome: Current Opinion Neurobiol. 4, 569 (1994).

    Google Scholar 

  37. A. Frien, R. Eckhorn, R. Bauer, T. Woelbern, A. Gabriel: Europ. J. Neurosci. 12, 1453 (2000).

    Google Scholar 

  38. C. Spengler: Masters Thesis, Philipps-University, supervised by R. Eckhorn (1996).

    Google Scholar 

  39. H. Sompolinsky, and R. Shapley: Current Opinion Neurobiol. 7, 514 (1997).

    Google Scholar 

  40. C.M. Gray, D.A. McCormick: Science 274, 109 (1996).

    Google Scholar 

  41. A.M. Sillito, H.E. Jones, G.L. Gerstein, and D.C. West,: Nature 369, 479 (1994).

    Google Scholar 

  42. A. Frien, R. Eckhorn: Europ. J. Neurosci. 12, 1466 (2000).

    Google Scholar 

  43. I. Rock, and S. Palmer: Sci. Amer. 263, 48 (1990).

    Google Scholar 

  44. A.F. Kramer, A. Jacobson: Percept. Psychophys. 50, 267 (1991).

    Google Scholar 

  45. U. Polat, and A.M. Norcia, A.M.: Vision Res. 36, 2099 (1996).

    Google Scholar 

  46. C.M. Gray, A.K. Engel, P. König, W. Singer: Europ. J. Neurosci. 2, 607 (1990).

    Google Scholar 

  47. C.M. Gray, G. Viana Di Prisco: J. Neurosci. 17, 3239 (1997).

    Google Scholar 

  48. A.K. Engel, P. König, C.M. Gray, W. Singer: Europ. J. Neurosci. 2, 588 (1990).

    Google Scholar 

  49. A.K. Engel, P. König, A.K. Kreiter, W. Singer: Science 252, 1177 (1991a).

    Google Scholar 

  50. A.K. Engel, A.K. Kreiter, P. König, W. Singer: Proc. Natl. Acad. Sci. USA 88, 6048 (1991b).

    Google Scholar 

  51. A.K. Kreiter, and W. Singer: Europ. J. Neurosci. 4, 369 (1992).

    Google Scholar 

  52. P. König, A.K. Engel, P.R. Roelfsema, W. Singer: Neural Comp. 7, 469 (1995a).

    Google Scholar 

  53. M.H.J. Munk, P.R. Roelfsema, P. König, A.K. Engel, W. Singer: Science 272, 271 (1996).

    Google Scholar 

  54. A.K. Kreiter, W. Singer: J. Neurophysiol. 16, 2381 (1996).

    Google Scholar 

  55. M. Brosch, R. Bauer, R. Eckhorn: Cerebral Cortex 7, 70 (1997).

    Google Scholar 

  56. H. Sompolinsky, D. Golomb, D. Kleinfeld: Proc. Natl. Acad. Sci. USA 87, 7200 (1990).

    Google Scholar 

  57. T.B. Schillen, P. König: Biol. Cybern. 70, 397 (1994).

    Google Scholar 

  58. R. Ritz, W. Gerstner, U. Fuentes, J.L. van Hemmen- Biol. Cybernetics 71, 349 (1994a).

    MATH  Google Scholar 

  59. R. Ritz, W. Gerstner, J.L. van Hemmen. in Models of Neural Networks II, edited by E. Domany, J.L. van Hemmen, K. Schulten ( Springer Verlag, New York 1994b ) p. 177.

    Google Scholar 

  60. U. Schott: Masters Thesis, Philipps University, Dept Neurophysics, Marburg, supervised by R. Eckhorn (1995).

    Google Scholar 

  61. M. Stoecker, H.J. Reitboeck, R. Eckhorn: Neurocomputing 11, 123 (1996).

    MATH  Google Scholar 

  62. A. Guettler, R. Eckhorn, E. Juergens, A. Frien: in Göttingen Neurobiology Report edited by N. Elsner, H. Wässle (Thieme, Stuttgart, New York 1997 ) p. 551.

    Google Scholar 

  63. A. Gail, H.J. Brinksmeyer, R. Eckhorn: Cerebral Cortex 10, 840 (2000).

    Google Scholar 

  64. W. Jordan: Dissertation, Philipps-University Marburg supervised by R. Eckhorn (1989) .

    Google Scholar 

  65. R. Bauer, M. Brosch, R. Eckhorn: Brain Res. 669, 291 (1995).

    Google Scholar 

  66. M. Brosch, R. Bauer, R. Eckhorn: Europ. J. Neurosci. 7, 86 (1995).

    Google Scholar 

  67. A. Frien, R. Eckhorn, H.J. Reitboeck: Soc. Neurosci. Abstr. 22, 255. 5 (1996).

    Google Scholar 

  68. E. Juergens, R. Eckhorn, A. Frien, T. Woelbern: in Brain and Evolution, edited by N. Elsner, and H.-U. Schnitzler ( Thieme, Berlin, New York 1996 ) p. 418.

    Google Scholar 

  69. R. Eckhorn, T. Schanze, M. Brosch, W. Salem, R. Bauer: in Induced Rhythms in the Brain. Brain Dynamics Series, edited by E. Basar, T.H. Bullock (Birkhäuser, Boston, Basel, Berlin 1992 ) p. 47.

    Google Scholar 

  70. H.A. Swadlow: Brain Res. Reviews 6, 1 (1983).

    Google Scholar 

  71. J.I. Nelson, P.A. Salin, M.H.J. Munk, M. Arzi, J. Bullier: Visual Neurosci. 9, 21 (1992).

    Google Scholar 

  72. L.G. Nowak, M.H.J. Munk, P. Girard, J. Bullier: Vis. Neurosci. 12, 371 (1995b).

    Google Scholar 

  73. J.I. Nelson, P.A. Salin, M.H.J. Munk, M. Arzi, J. Bullier: Visual Neurosci. 9, 21 (1992).

    Google Scholar 

  74. L.G. Nowak, M.H.J. Munk, J.I. Nelson, A.C. James, J. Bullier:J. Neurophysiol. 74, 2379 (1995a).

    Google Scholar 

  75. M. Steriade: Current Opinion Neurobiol. 3, 619 (1993).

    Google Scholar 

  76. M. Steriade, F. Amzica, D. Contreras: J. Neurosci. 16, 392 (1996).

    Google Scholar 

  77. V. Braitenberg, A. Schüz: Anatomy of the Cortex. Statistics and Geometry ( Springer, Berlin 1991 ).

    Google Scholar 

  78. H. Agmon-Snir, I. Segev: J. Neurophysiol. 70 (1993).

    Google Scholar 

  79. A. Gabriel, R. Eckhorn: Göttingen Neurobiology Report 1999, Thieme, Stuttgart, New York, p 489 (1999).

    Google Scholar 

  80. M. Saam, R. Eckhorn: in New Neuroethology on the Move, edited by N. Elsner, R. Wehner (Thieme 1998 ) p. 767.

    Google Scholar 

  81. R. Eckhorn, T. Schanze: in Self-Organization, Emerging Properties and Learning, edited by A. Babloyantz ( Plenum Press, New York 1991 ) p. 63.

    Google Scholar 

  82. R. Eckhorn, A. Frien: in Brain Processes, Theories and Models: An International Conference in Honor of W.S. McCulloch 25 Years After His Death, edited by R. Moreno-Diaz and J. Mira-Mira ( MIT-Press, Cambridge MA 1995 ) p. 381

    Google Scholar 

  83. T. Wennekers, M. Erb, G. Palm, R. Eckhorn: Europ. J. Neurosci. Suppl. 7, 66. 03 (1994).

    Google Scholar 

  84. Woelbern T, Frien A, Eckhorn R, Bauer R, Kehr H: in Proceedings of the 22nd Göttingen Neurobiology Meeting, edited by N. Elsner, H. Breer ( Thieme, Stuttgart New York 1994 ) p. 518.

    Google Scholar 

  85. R. Eckhorn: IEEE Neural Networks 10, 464 (1999).

    Google Scholar 

  86. M. Alpern: in Handbook of Sensory Physiology Vol VII — 4, Visual Psychophysics, edited by D. Jameson, L.M. Hurvich (1972).

    Google Scholar 

  87. E.T. Rolls, M.U. Tovee: Proc. Roy. Soc. Lond. B 257, 9 (1994).

    Google Scholar 

  88. L. Padulo, M.A. Arbib: System Theory ( Saunders, New York 1974 ).

    MATH  Google Scholar 

  89. G. Westheimer: Progress Sens. Physiol. 1, 1 (1981).

    Google Scholar 

  90. A. Guettler, R. Eckhorn, A. Frien, T. Woelbern: in Brain and Evolution, edited by N. Elsner, and H.-U. Schnitzler ( Thieme, Berlin, New York 1996 ) p. 421.

    Google Scholar 

  91. R.J. Douglas, K.A.C. Martin: J. Physiol. 440, 735 (1991).

    Google Scholar 

  92. Y. Kuramoto: Physica D 50, 15 (1991).

    MATH  Google Scholar 

  93. H.G. Schuster, P. Wagner: Biol. Cybernetics 64, 72 (1990).

    Google Scholar 

  94. W. Gerstner, R. Ritz, J.L. van Hemmen. Biol. Cybernetics 68, 363 (1993).

    MATH  Google Scholar 

  95. M. Nelson:Neural Computation 6, 242 (1994).

    Google Scholar 

  96. E. Juergens, A. Guettler, R. Eckhorn: Exp. Brain Res. 129, 247 (1999) .

    Google Scholar 

  97. V.A.F. Lamme: J. Neurosci. 15, 1605 (1995).

    Google Scholar 

  98. C. van der Togt, V.A.F. Lamme, H. Spekreijse: Europ. J. Neurosci., 10, 1490 (1998).

    Google Scholar 

  99. M. Musser, A. Roth: J. Neurosci. 17, 7606 (1997).

    Google Scholar 

  100. K. Fox, N. Daw: (1992) Neural Computation 4, 59 (1992).

    Google Scholar 

  101. P. König, A.K. Engel, W. Singer: Trends Neurosci. 19, 130 (1996).

    Google Scholar 

  102. M. Volgushev, M. Chistiakova, W. Singer: Neurosci. 83, 15 (1998).

    Google Scholar 

  103. E.D. Lumer, G.M. Edelman, and G. Tononi: Cerebral Cortex 7, 228 (1997).

    Google Scholar 

  104. R. Eckhorn: in Information Processing in the Cortex, Experiments and Theory, edited by A. Aertsen, V. Braitenberg ( Springer-Verlag, Berlin, Heidelberg New York 1992 ) p. 385.

    Google Scholar 

  105. U. Mitzdorf: Int. J. Neurosci. 33, 33 (1987).

    Google Scholar 

  106. A.D. Legatt, J. Arezzo, H.G. Vaughan, Jr.: J. Neurosci. Meth. 2, 203 (1980) .

    Google Scholar 

  107. C.M. Gray, P.E. Maldonado, M. Wilson, B. McNaughton: J. Neurosci. Meth. 63, 43 (1995).

    Google Scholar 

  108. K. Zipser, V.A.F. Lamme: J. Neurosci. 16, 7376 (1996).

    Google Scholar 

  109. T. Wennekers, G Palm G: in Time and the Brain, edited by R. Miller, Gordon Breach, Lausanne, p. 202 (2000).

    Google Scholar 

  110. R. Eckhorn, A. Frien, R. Bauer, T. Woelbern, H. Kehr: NeuroReport 4, 243 (1993).

    Google Scholar 

  111. M. Saam, R. Eckhorn: Biol. Cybern. 83, L1 (2000).

    Google Scholar 

  112. B. Jagadeesh, C.M. Gray, D. Ferster: Science 257, 552 (1992).

    Google Scholar 

  113. M.H.J. Munk, L.G. Nowak, G. Chouvet, J.I. Nelson, J. Bullier: Eur. J. Neurosci. Suppl. 5, 21 (1992).

    Google Scholar 

  114. V.N. Murthy, E. E. Fetz: Neural Computation 6, 1111 (1994).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eckhorn, R. (2002). Neural Principles of Preattentive Scene Segmentation: Hints from Cortical Recordings, Related Models, and Perception. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics