Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

Abstract

Iterative matrix eigenvalue algorithms are considered from a dynamical systems point of view. Local convergence properties are analyzed by means of global analysis. These methods are used to reproduce well-known results as well as develop new efficient algorithms. The methodology is universal in the sense that the convergence analysis of a wide class of algorithms can be treated in exactly the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Abatzoglou and B. O’Donnell. Minimization by coordinate descent. J. of Optimization Theory and Applications, 36(2): 163–174, February 1982.

    Article  MathSciNet  MATH  Google Scholar 

  2. P.-A. Absil, R. Mahony, R. Sepulchre, and P. Van Dooren. A Grassmann-Rayleigh quotient iteration for computing invariant subspaces. SIAM Review, 44(1): 57–73, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Batterson. Dynamical analysis of numerical systems. Numerical Linear Algebra with Applications, 2(3): 297–309, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Batterson and J. Smillie. The dynamics of Rayleigh quotient iteration. SIAM J. Num. Anal., 26(3): 624–636, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Batterson and J. Smillie. Rayleigh quotient iteration fails for nonsymmetric matrices. Appl Math. Lett, 2(1): 19–20, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Batterson and J. Smillie. Rayleigh quotient iteration for nonsymmetric matrices. Math. of Computation, 55(191): 169–178, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming. John Wiley &: Sons, New York, second edition, 1993.

    MATH  Google Scholar 

  8. R.P. Brent and F.T. Luk. The solution of singular value and symmetric eigen value problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput., 6(1): 69–84, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Demmel and K. Veselic. Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl, 13: 1204–1245, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 2nd ed., 1989.

    MATH  Google Scholar 

  11. J. Götze. On the parallel implementation of Jacobi’s and Kogbetliantz’s algorithms. SIAM J. Sci. Stat. Comput, 15(6): 1331–1348, 1994.

    Article  MATH  Google Scholar 

  12. J. Götze. Orthogonale Matrixtransformationen, Parallele Algorithmen, Architekturen und Anwendungen. Oldenbourg, München, 1995. in German.

    MATH  Google Scholar 

  13. M. Haardt, K. Hüper, J.B. Moore, and J.A. Nossek. Simultaneous Schur decomposition of several matrices to achieve automatic pairing in multidimen-sional harmonic retrieval problems. In S. Carrato, G. Ramponi, G. L. Sicuranza and S. Marsi, editors, Signal Processing VIII: Theories and Applications, Proc. of EUSIPCO-96, pp. 531–534, Trieste, Italy, 1996.

    Google Scholar 

  14. U. Helmke and K. Hüper. The Jacobi method: A tool for computation and control. In C.I. Byrnes, B.N. Datta, C.F. Martin, and D.S. Gilliam, editors. Systems and Control in the Twenty-First Century, pp. 205–228, Boston, 1997. Birkhäuser.

    Google Scholar 

  15. U. Helmke and K. Hüper. A Jacobi-type method for computing balanced realizations. Systems & Control Letters, 39: 19–30, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  16. U. Helmke, K. Hüper, and J.B. Moore. Computation of signature symmetric balanced realizations. Journal of Global Optimization, 2002. Special issue on the International Workshop on Optimization with High Technology Applications 2000. Guest edited by K.L. Teo, T.C.E. Cheng, and X.Q. Cai.

    Google Scholar 

  17. P. Henricl On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices. J. Soc. Indust. Appl Math., 6(2): 144–162, 1958.

    Article  MathSciNet  Google Scholar 

  18. K. Hüper. Structure and convergence of Jacobi-type methods for matrix computations. PhD thesis, Technical University of Munich, June 1996.

    Google Scholar 

  19. K. Hüper. A calculus approach to matrix eigenvalue algorithms. Habilitation Address, July 2002. Department of Mathematics, Würzburg University, Germany.

    Google Scholar 

  20. K. Hüper and P. Van Dooren. New Algorithms for the Iterative Refinement of Estimates of Invariant Subspaces, accepted October 2002. Future Generation Computer Systems. Special issue: Structural dynamical systems in linear algebra and control: computational aspects. Guest Edited by L. Lopez.

    Google Scholar 

  21. K. Hüper and U. Helmke. Geometrical methods for pole assignment algorithms. In Proc. IEEE of the 34th Conference on Decision and Control, New Orleans, USA, 1995.

    Google Scholar 

  22. K. Hüper, U. Helmke, and J.B. Moore. Structure and convergence of conventional Jacobi-type methods minimizing the off-norm function. In Proc. IEEE of the 35th Conference on Decision and Control, pp. 2124–2128, Kobe, Japan, 1996.

    Google Scholar 

  23. C.G.J. Jacobi Über ein leichtes Verfahren, die in der Theorie der Säcular-störungen vorkommenden Gleichungen numerisch aufzulösen. Crelle’s J. für die reine und angewandte Mathematik, 30: 51–94, 1846.

    Article  MATH  Google Scholar 

  24. M. Kleinsteuber. Das Jacobi-Verfahren auf kompakten Lie-Algebren, 2000. Diplomarbeit (Master Thesis), Mathematisches Institut, Universität Würzburg, in German.

    Google Scholar 

  25. M. Kleinsteuber, K. Hüper, and U. Helmke. Jacobi methods on compact Lie algebras, 2002. in preparation.

    Google Scholar 

  26. D.G. Luenberger. Linear and nonlinear programming. Addison-Wesley, Reading, 2nd ed., 1984.

    MATH  Google Scholar 

  27. Z.Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. J. of Optimization Theory and Applications, 72(1): 7–35, January 1992.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.M. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of characteristic roots and vectors.Arch. rational Mech. Anal., 1–4: 233–241, 423–428, 325–340, 341–347, 472–481, 153–165, 1958/59.

    Google Scholar 

  29. R.D. Pantazis and D.B. Szyld. Regions of convergence of the Rayleigh.

    Google Scholar 

  30. B.N. Parlett. The Rayleigh quotient iteration and some generalizations for non-normal matrices. Math. of Computation, 28(127): 679–693, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  31. B.N. Parlett. The symmetric eigenvalue problem. Prentice Hall, 1980.

    MATH  Google Scholar 

  32. A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel computer. Math. of Computation, 25: 579–590, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Shub and A.T. Vasquez. Some linearly induced Morse-Smale systems, the QR algorithm and the Toda lattice. Contemporary Math., 64: 181–194, 1987.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Hüper, K. (2003). A Dynamical System Approach to Matrix Eigenvalue Algorithms. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics