Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

Abstract

Numerical matrix eigenvalue methods such as the inverse power iteration or the QR-algorithm can be reformulated as inverse power iterations on homogeneous spaces. In this paper we survey some recent results on controllability properties of the shifted inverse power iteration on flag manifolds. It is shown that the reachable sets are orbits for a semigroup action on the flag manifold. Except for the special case of projective spaces, the algorithm is never controllable. This implies in particular the non-controllability of the shifted QR-algorithm on isospectral matrices. Controllability results for the inverse power iteration on projective space for real or complex shifts are presented, following [20, 22], and a connection with output feedback pole assignability is mentioned. Controllability of the algorithm on Hessenberg flags is shown. This implies controllability of the shifted QR-algorithm on Hessenberg matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren, A Grassmann-Rayleigh quotient iteration for computing invariant subspaces, SIAM Review, 44 (2002), pp. 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Albertini and E. Sontag, Discrete-time transitivity and accessibility: analytic systems, SIAM J. Contr. & Opt., 31 (1993), pp. 1599–1622.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Ammar and C. Martin, The Geometry of Matrix Eigenvalue Methods, Acta Applicandae Mathematicae, 5 (1986), pp. 239–278.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Batterson, Dynamical analysis of numerical systems, Numer. Linear Algebra Appl., 2 (1995), pp. 297–310.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Batterson and J. Smillie, Rayleigh quotient iteration for nonsymmetric matrices, Math. Comput., 55 (1990), pp. 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Batterson and J. Smillie, The dynamics of Rayleigh quotient iteration, SIAM J. Numer. Anal., 26 (1989), pp. 624–636.

    Article  MathSciNet  MATH  Google Scholar 

  7. A.M. Bloch, R.W. Brockett and T. Ratiu, A new formulation of the generalized Toda lattice equations and their fixed point analysis via the moment map, Bull. Amer. Math. Soc., 23 (1990), pp. 447–456.

    Article  MathSciNet  Google Scholar 

  8. A.M. Bloch, H. Flaschka and T. Ratiu, A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra, Duke Math J., 61 (1990), pp. 41–65.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.W. Brockett, Dynamical systems that sort lists and solve linear programming problems, Proc. 27th IEEE Conference on Decision and Control, Austin, TX, 779–803. See also Linear Algebra Appl., 146 (1991), pp. 79–91.

    Google Scholar 

  10. R.W. Brockett, Smooth dynamical systems which realize arithmetical and logical operations, Three Decades of Mathematical System Theory, 135, Lecture Notes in Control and Information Sciences, Springer-Verlag, 1989, pp. 19–30.

    Chapter  Google Scholar 

  11. R.W. Brockett, Differential geometry and the design of gradient algorithms. Proceedings of Symposia in Pure Mathematics, 54 (1993), pp. 69–91.

    MathSciNet  Google Scholar 

  12. P. Deift, T. Nanda and C. Tomei, Ordinary differential equations for the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20 (1983), pp. 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. De Mari, C. Procesi and M. Shayman, Hessenberg varieties, Transactions of the American Mathematical Society 332 (1992), pp. 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. De Mari and M. Shayman, Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix, Acta Applicandae Mathematicae, 12 (1988), pp. 213–235.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Edelman, T. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Analysis and Applications, 20 (1998), pp. 303–353.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Flaschka, The Toda lattice, I, Phys. Rev., B9 (1974), pp. 1924–1925.

    MathSciNet  Google Scholar 

  17. I.M. Gelfand, R.M. Goresky, R.D. MacPherson and V.V. Serganova, Combinatorial Geometries, Convex Polyhedra and Schubert Cells, Advances in Mathematics, 63 (1987), pp. 301–316.

    Article  MathSciNet  Google Scholar 

  18. G. M. L. Gladwell, Total Positivity and the QR-Algorithm, Linear Algebra and its Applications, 271 (1998), pp 257–272.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Gustafsson, Stepsize control in ODE Solvers — Analysis and Synthesis, Ph.D. Thesis, Lund Institute of Technology, (1998).

    Google Scholar 

  20. U. Helmke and P.A. Fuhrmann, Controllability of matrix eigenvalue algorithms: the inverse power method. Systems and Control Letters, 41 (2000), pp. 57–66.

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Helmke and J.B. Moore, Optimization and Dynamical Systems, Communication and Control Engineering Series, Springer Publ. London, 1994.

    Google Scholar 

  22. U. Helmke and F. Wirth, On controllability of the real shifted inverse power iteration, Systems and Control Letters, 43 (2001), pp. 9–23.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Hüper, A calculus approach to matrix eigenvalue algorithms. Habilitation Address, July 2002. Department of Mathematics, Würzburg University, Germany.

    Google Scholar 

  24. K. Hüper, A Dynamical System Approach to Matrix Eigenvalue Algorithms. This volume.

    Google Scholar 

  25. M. Shub and A.T. Vasquez, Some linearly induced Morse-Smale systems, the QR-algorithm and the Toda lattice, in: The Legacy of Sonya Kovaleskaya (L. Keen, ed) Contemporary Mathematics 64, A.M.S., Providence (1987), pp. 181–194.

    Chapter  Google Scholar 

  26. P. Van Dooren and R. Sepulchre, Shift policies in QR-like algorithms and feedback control of self-similar flows. Open Problems in Mathematical Systems and Control Theory (V.D. Blondel, E.D. Sontag, M. Vidyasagar and J.C. Willems, Eds.), Communications and Control Engineering Series. Springer Publ., London, 1999, pp. 245–249.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Helmke, U., Jordan, J. (2003). Numerics Versus Control. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics