Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

Abstract

This paper surveys the major techniques and results for multi-dimensional capacity (entropy), topological pressure and Hausdorff dimension for ℤd-subshifts of finite type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Beichl and F. Sullivan, Approximating the permanent via importance sampling with application to the dimer covering problem, J. Comp. Phys. 149: 128–147 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Berger, The Undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66 (1966).

    Google Scholar 

  3. H.J. Brascamp, H. Kunz, and F.Y. Wu, Some rigoroxis results for the vertex model in statistical mechanics, J. Math. Phys. 14: 1927–1932 (1973).

    Article  Google Scholar 

  4. L. Bregman, Certain properties of nonnegative matrices and their permanents, Dokl Akad. Nauk SSSR 211: 27–30 (1973).

    MathSciNet  Google Scholar 

  5. N.J. Calkin and H.S. Wilf, The number of independent sets in a grid graph, SIAM J. Discr. Math. 11: 54–60 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ciucu, An improved upper bound for the 3-dimensional dimer problem, Duke Math. J. 94: 1–11 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. G.P. Egorichev, Proof of the van der Waerden conjecture for permanents, Siberian Math. J. 22: 854–859 (1981).

    Google Scholar 

  8. K. Falconer, A subadditive thermodynamics formalism for mixing repellers, J. Phys. A: Math. Gen. 21: L737-L742 (1988).

    Article  MathSciNet  Google Scholar 

  9. D.I. Falikman, Proof of the van der Waerden conjecture regarding the permanent of doubly stochastic matrix. Math. Notes Acad. Sci. USSR 29: 475–479 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. M.E. Fisher, Statisticsd mechanics of dimers on a plane lattice, Phys. Rev. 124: 1664–1672 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Forschhammer and J. Justesen, Entropy bounds for constrained two-dimensional random fileds, IEEE Trans. Info. Theory 46: 118–127 (1999).

    Article  Google Scholar 

  12. R.H. Fowler and G.S. Rushbrooke, Statistical theory of perfect solutions. Trans. Faraday Soc. 33: 1272–1294 (1937).

    Article  Google Scholar 

  13. S. Friedland, A lower bound for the permanents of a doubly stochastic matrix. Annals Math. 110: 167–176 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Friedland, On the entropy of Z-d subshifts of finite type, Linear Algebra Appl. 252: 199–220 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Friedland, Discrete Lyapunov exponents and Hausdorff dimension, Ergod. Th. & Dynam. Sys, 20: 145–172 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, New York, 1985.

    MATH  Google Scholar 

  17. J.M. Hammersley, Existence theorems and Monte Carlo methods for the monomer-dimer problem, in 1966 Reseach papers in statistics: Festschrift for J, Neyman, Wiley, London, 1966, 125–146.

    Google Scholar 

  18. J.M. Hammersley, An improved lower bound for the multidimensional dimer problem, Proc. Camh. Phil Soc. 64: 455–463 (1966).

    Article  MathSciNet  Google Scholar 

  19. F.R. Gantmacher, The Theory of Matrices, 2 vols., Chelsea, New York, 1959.

    MATH  Google Scholar 

  20. P.W. Kasteleyn, The statistics of dimers on a lattice, Physica 27: 1209–1225 (1961).

    Article  Google Scholar 

  21. G. Keller, Equilibrium States in Ergodic Theory, Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  22. J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Stat Soc. B 30: 499–510 (1968).

    MathSciNet  MATH  Google Scholar 

  23. U. Krengel, Ergodic Theorems, de Gruyter Studies in Math, 1985.

    Book  MATH  Google Scholar 

  24. E.H. Lieb, Residual entropy of square ice, Phys. Review 162: 162–172 (1967).

    Article  Google Scholar 

  25. H. Ming, Permanents, Encyclopedia of Mathematics and its Applications, Vol. 6, Addison-Wesley, 1978.

    Google Scholar 

  26. M. Misiurewicz, A short proof of the variational ℤN action on a compact space, Asterisque 40: 147–157 (1976).

    MathSciNet  Google Scholar 

  27. J.F. Nagle, Lattice statistics of hydrogen bonded crystals. I. The residual entropy of ice, J. Math. Phys. 7: 1484–1491 (1966).

    Article  MathSciNet  Google Scholar 

  28. J.F. Nagle, New series expansion method for the dimer problem, Phys. Rev. 152: 190–197 (1966).

    Article  Google Scholar 

  29. Z. Nagy and K. Zeger, Capacity bounds for the 3-dimensional (0,1) run length limited channel, IEEE Trans. Info. Theory 46: 1030–1033 (2000).

    Article  MATH  Google Scholar 

  30. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, J. Amer. Chem. Soc. 57: 2680–2684 (1935).

    Article  Google Scholar 

  31. Y.B. Pesin, Dimension Theory in Dynamical Systems, Univ. of Chicago Press, 1997.

    Google Scholar 

  32. R. Robinson, Undecidability and nonperiodicity for tiling of the plane. Invent. Math. 53: 139–186 (1989).

    Google Scholar 

  33. D. Ruelle, Thermodynamics Formalism, Encyclopedia of mathematics and its applications. Vol. 5, Addison-Wesley 1978.

    Google Scholar 

  34. K. Schmidt, Algebraic Ideas in Ergodic Theory, Amer. Math. Soc., 1990.

    MATH  Google Scholar 

  35. A. Schrijver, Counting 1-factors in regular bipartite graphs, J. Comb. Theory B 72: 122–135 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  37. W. Weeks and R.E. Blahut, The capacity and coding gain of certain checkerboard codes, IEEE Trans. Info. Theory 44: 1193–1203 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. L.S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys. 2: 109–124 (1982).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Friedland, S. (2003). Multi-Dimensional Capacity, Pressure and Hausdorff Dimension. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics