Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

  • 869 Accesses

Abstract

In this paper, which is largely review, I will discuss dissipative behavior in mechanical systems which preserve energy. The paper will encompass both the classical and quantum domains. In the classical context I will consider almost Poisson systems; systems which which have a Poisson braket which fails the Jacobi identity. This class of systems includes nonholonomic mechanical systems: systems with nonintegrable constraints such as rolling constraints. Such systems may either preserve or fail to preserve a natural measure. I will discuss also pure Hamiltonian systems such as the Toda lattice which can exhibit dissipative behavior in certain contexts as well as infinite-dimensional systems exhibiting radiative damping. In the quantum context I will discuss systems of quantum oscillators coupled to a heat bath, which also exhibit natural dissipative behavior.

Research partially supported by NSF grants DMS-9803181 and DMS-0103895.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auckly D., L. Kapitanski, and W. White. Control of nonlinear underactuated systems, Comm. Pure Appl. Math. 53: 354–369 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Baras J.S., R.W. Brockett, and P.A. Fuhrmann. State-space models for infinite-dimensional systems, IEEE Trans. Aut. Control 19: 693–700 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  • Bates L. Examples of singular nonholonomic reduction, Reports in Mathematical Physics, 42: 231–247 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Blankenstein G., R. Ortega, and A. van der Schaft. The matching conditions of controlled Lagrangians and IDA passivity-based control, Int. J. Control (2001), to appear.

    Google Scholar 

  • Bloch A.M. An infinite-dimensional classical integrable system and the Heisenberg and Schrodinger representations. Physics Letters 116A: 353–355 (1986).

    MathSciNet  Google Scholar 

  • Bloch A.M. Steepest descent, linear programming and Hamiltonian flows, Contemp. Math. AMS 114: 77–88 (1990).

    Article  MathSciNet  Google Scholar 

  • Bloch A.M. Asymptotic stability in energy-preserving systems. Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, pp. 2524–2526 (1999).

    Google Scholar 

  • Bloch A.M. Asymptotic Hamiltonian Dynamics: the Toda lattice, the three-wave interaction and the nonholonomic Chaplygin sleigh Physica D 141: 297–315 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., J. Baillieul, R Crouch, and J.E. Marsden. Nonholonomic Mechanics and Control, Springer Verlag (2002), to appear.

    Google Scholar 

  • Bloch A.M., R.W. Brockett, and T. Ratiu. A new formulation of the generalized Toda lattice equations and their fixed-point analysis via the moment map, Bulletin of the AMS 23(2): 447–456 (1990).

    Article  MathSciNet  Google Scholar 

  • Bloch A.M., R.W. Brockett, and T.S. Ratiu. Completely integrable gradient flows, Comm. Math. Phys. 147: 57–74 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., D. Chang, N. Leonard, and J.E. Marsden. Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping. Trans IEEE on Auto. Control, 46: 1556–1571 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M. and R Crouch. Nonholonomic Control Systems on Riemannian Manifolds, SIAM J. on Control 37: 126–148 (1995).

    Article  MathSciNet  Google Scholar 

  • Bloch A.M., S.V. Drakunov, and M. Kinyon. Stabilization of nonholonomic systems using isospectral flows, SIAM Journal of Control and Optimization 38: 855–874 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., H. Flaschka, and T.S. Ratiu. A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra, Duke Math. J. 61: 41–66 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M. and M. Gekhtman. Hamiltonian and gradient structures in the Toda flows. The Journal of Geometry and Physics 27(3–4): 230–248 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., R Hagerty, A. Rojo, and M. Weinstein. Gyroscopic classical and quantum oscillators interacting with heat baths. Proceedings of the 40th CDC, 2001.

    Google Scholar 

  • Bloch A.M., R Hagerty, A. Rojo, and M. Weinstein. Gyroscopically stabilized classical and quantum oscillators and heat baths (2002), to appear.

    Google Scholar 

  • Bloch A.M., P.S. Krishnaprasad, J.E. Marsden, and T.S. Ratiu. Dissipation Induced Instabilities, Ann. Inst. H. Poincaré, Analyse Nonlineare, 11 : 37–90 (1994).

    MathSciNet  MATH  Google Scholar 

  • Bloch A.M., P.S. Krishnaprasad, J.E. Marsden, and T.S. Ratiu. The Euler-Poincaré equations and double bracket dissipation. Comm. Math. Phys., 175: 1–42 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., P.S. Krishnaprasad, J.E. Marsden, and R. Murray. Nonholonomic Mechanical Systems with Symmetry, Arch. Rat. Mech. An. 136: 21–99 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M., N. Leonard, and J.E. Marsden. Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45: 2253–2270 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A.M. and A. Rojo. Control of squeezed states, Proc. American Control Conference, 2000.

    Google Scholar 

  • Bloch A.M., A. Ruina, and D. Zenkov. Asymptotic stability and discrete symmetries in nonholonomic systems (2002), to appear.

    Google Scholar 

  • Brockett R.W. Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, (RJ. Hilton and G.S. Young, eds.), Springer-Verlag., pp. 11–27 (1981).

    Google Scholar 

  • Brockett R.W. Dynamical systems that sort lists and solve linear programming problems, Proc. IEEE 27: 799–803 (1988); and Linear Algebra and its Appl 146: 79–91 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  • Brockett R.W. and L.E. Faybusovich. Toda flows, inverse spectral problems and realization theory. Systems and Control Letters 16: 79–88 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  • Cannas da Silva A. and A. Weinstein. Geometric Models for Noncommutative Algebras, American Mathematical Society, 1999.

    MATH  Google Scholar 

  • Caldeira A.O and A.J. Legget. Path integral approach to quantum Brownian motion Physica 121A: 587–616 (1983).

    Google Scholar 

  • Carr J. Applications of Center Manifold Theory, Springer Verlag, 1981.

    Book  Google Scholar 

  • Chang D., A.M. Bloch, N. Leonard, J.E. Marsden, and C.A. Woolsey. The equivalence of controlled Lagrangian and controlled Hamiltonian systems, to appear in ES AIM: Control, Optimization and Calculus of Variations, 2002.

    Google Scholar 

  • Chernov N.J., G.J. Eyink, J.L. Lebowitz, and Ya. G. Sinai. Steady-State electrical conduction in the periodic Lorentz gas. Comm. Math. Phys. 154: 560–601 (1993).

    Article  MathSciNet  Google Scholar 

  • Chu M.T. The generalized Toda flow, the QR algorithm, and the center manifold theory, SIAM J. Alg. Disc. Meth 5(2): 187–201 (1984).

    Article  MATH  Google Scholar 

  • Crouch RE. Geometric structures in systems theory, IEEE Proc. Part D, 128(5) (1981).

    Google Scholar 

  • Davis M.W. Some aspherical manifolds, Duke Math. J. 5: 105–139 (1987).

    Article  Google Scholar 

  • Deift P.T. Nanda and C. Tomei. Differential equations for the symmetric eigenvalue problem, SIAM J. on Numerical Analysis 20: 1–22 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • Federov Yu. N. and V. Kozlov. Various aspects of n-dimensional rigid body dynamics, Amer. Math. Soc. Trans 168(2): 141–171 (1995).

    Google Scholar 

  • Flaschka H. The Toda Lattice, Phys. Rev. B 9: 1924–1925 (1974).

    Article  MathSciNet  Google Scholar 

  • Ford G.W., J.T. Lewis, and R.F. O’Connel. Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian, J. Stat. Phys. 53: 439–455 (1988).

    Article  Google Scholar 

  • Gallivotti G and E.G.D. Cohen. Dynamical ensembles in stationary states, J. Stat. Phys. 80: 931–970 (1995).

    Article  Google Scholar 

  • Gauss C.F. Uber ein neues allgemeines grundgesatz der mechanik, Journal für die Reine und Angewandte Mathematik 4: 232–235 (1829).

    Article  MATH  Google Scholar 

  • Gekhtman M. and M. Shapiro. Completeness of real Toda flows, Math. Zeitschrift 226: 51–66 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbs J.W. On the fundamental formulae of dynamics, American Journal of Mathematics II: 49–64 (1879).

    Article  MathSciNet  Google Scholar 

  • Guckenheimer J. and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Vector Fields, Springer Verlag, 1983.

    MATH  Google Scholar 

  • Hagerty P., A.M. Bloch, and M. Weinstein. Radiation induced instability in interconnected systems. Proceedings of the 38th CDC, IEEE, pp. 651–656 (1999).

    Google Scholar 

  • Hagerty P., A.M. Bloch, and M. Weinstein. Radiation Induced Instability (2002) to appear.

    Google Scholar 

  • Hamberg J. General matching conditions in the theory of controlled Lagrangians, in Proc. CDC, IEEE, 38: 2519–2523 (1999).

    Google Scholar 

  • Holian B.L., W.G. Hoover, and H.A. Posch. Resolution of Loschmidt’s paradox: the origin of irreversible behavior in reversible atomistic dynamics, Phys. Rev. Lett. 59: 10–13 (1987).

    Article  MathSciNet  Google Scholar 

  • Joos E. Elements of environmental decoherence, quant-ph/9908008, 1999.

    Google Scholar 

  • Jovanovic B. Nonholonomic geodesic flows on Lie groups and the integrable Suslov problem on 50(4). J. Phys. A: Math. Gen. 31: 1415–1422 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Kirr E. and M. Weinstein. Parametically excited Hamiltonian partial differential equations, SIAM J. Math. Anal. 33: 16–52 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  • Kodama Y. and J. Ye. Toda hierarchy with indefinite metric, Physica D 91: 321–339 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  • Kodama Y. and J. Ye. Iso-spectral deformations of a general matrix and their reductions on Lie algebras, Comm. Math. Phys 178: 765–788 (1996b).

    Article  MathSciNet  MATH  Google Scholar 

  • Kodama Y. and J. Ye. Toda lattices with indefinite metric H: topology of isospectral manifolds, preprint, 1996c.

    Google Scholar 

  • Koon W.S. and J.E. Marsden. The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems, Reports on Math Phys. 40: 21–62 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  • Kostant B. The solution to a generalized Toda lattice and representation theory. Adv. in Math. 34: 195–338 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  • Komech A.L On the stabilization of string-oscillator interaction, Russian Journal of Mathematical Physics 3: 227–247 (1995a).

    MathSciNet  MATH  Google Scholar 

  • Komech A.L On stabilization of string-nonlinear oscillator interaction. Journal of Mathematical Analysis and Applications 196: 384–409 (1995b).

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov V.V. Invariant Measures of the Euler Poincaré Equations on Lie Algebras. Functional Anal. Appl. 22: 69–70 (1988).

    MATH  Google Scholar 

  • Krishnaprasad P.S. On the geometry of linear passive systems. Lectures in Applied Mathematics, Algebraic Geometric Methods in Systems Theory (C.I. Byrnes and C.F. Martin eds.), pp. 253–275 (1980).

    Google Scholar 

  • Lamb H. On the peculiarity of the wave-System due to the free vibrations of a nucleus in an extended medium. Proceeding of the London Math. Society, 32: 208–211 (1900).

    Article  MATH  Google Scholar 

  • Lewis A. The geometry of the Gibbs-Appell equations and Gauss’ principle of least constraint, Reports on Math. Phys. 38: 11–28 (1996).

    Article  MATH  Google Scholar 

  • Levermore D. Irreversibility (2002), http://www.math.umd.edu/Ivrmr/History

  • Lewis A.D. and R.M. Murray. Configuration controllability of simple mechanical control systems SIAM. Rev. 41: 555–574 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden J.E. and T.S. Ratiu. Introduction to Mechanics and Symmetry, Springer-Verlag, Texts in Applied Mathematics 17 (1999); First Edition 1994, Second Edition, 1999.

    MATH  Google Scholar 

  • Maschke B.M. and A.J. van der Schaft. Interconnected mechanical systems, in Modelling and Control of Mechanical Systems (A. Astolfi et al. eds.) Imperial College Press, London, 1997.

    Google Scholar 

  • Messiah A. Quantum Mechanics, North Holland, 1961.

    Google Scholar 

  • Neimark Ju. I. and N.A. Fufaev. Dynamics of Nonholonomic Systems, AMS, 1972.

    MATH  Google Scholar 

  • Moser J. Finitely many mass points on the line under the influence of an exponential potential — an integrable system, Springer Lecture Notes in Physics 38: 467–497 (1974).

    Article  Google Scholar 

  • Ortega R., M.W. Spong, F. Gómez-Estern, and G. Blankenstein. Stabilization of under-actuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, to appear.

    Google Scholar 

  • Ruina A. Non-holonomic stability aspects of piecewise nonholonomic systems, Reports in Mathematical Physics 42: 91–100 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Soffer A. and M.I. Weinstein. Time Dependent Resonance Theory, Geom. func. anal. 8: 1086–1128 (1998a).

    Article  MathSciNet  MATH  Google Scholar 

  • Soffer A. and M.I. Weinstein. Nonautonomous Hamiltonians, J. Stat. Phys. 93: 359–391 (1998b).

    Article  MathSciNet  MATH  Google Scholar 

  • Soffer A. and M.I. Weinstein. Resonances, Radiation Damping and Instability in Hamiltonian Nonlinear Wave Equations, Invent. Math. 136: 9–74 (1999).

    Article  MathSciNet  Google Scholar 

  • Symes W.W. The QR algorithm and scattering for the nonperiodic Toda lattice, Physica D 4: 275–280 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • Toda M. Studies of a non-linear lattice, Phys. Rep. Phys. Lett. 8: 1–125 (1975).

    MathSciNet  Google Scholar 

  • Tomei C. The topology of isospectral manifolds of diagonal matrices, Duke Math. J. 51: 981–996 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  • Unruh W.G. and W.H. Zurek. Reduction of a wave packet in quantum Brownian motion. Physical Review 40D: 1071–1094 (1989).

    MathSciNet  Google Scholar 

  • van der Schaft, A.J. and B. Maschke. On the Hamiltonian formulation of nonholonomic mechanical systems, Reports on Mathematical Physics 34: 225–233 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  • Willems J.C. Topological classification and structural stability of linear systems, J. Diff. Eqns. 35: 306–318 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  • Zenkov D.V. and A.M. Bloch. Dynamics of the n-Dimensional Suslov Problem, Journal of Geometry and Physics 34: 121–136 (1999).

    Article  MathSciNet  Google Scholar 

  • Zenkov D.V. and A.M. Bloch. Invariant Measures of Nonholonomic Flows with Internal Degrees of Freedom (2002), to appear.

    Google Scholar 

  • Zenkov D.V., A.M. Bloch, and J.E. Marsden. The Energy-Moment um Method for Stability of Nonholonomic Systems, Dynamics and Stability of Systems 13: 123–165 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Zenkov D.V., A.M. Bloch, and J.E. Marsden. Flat nonholonomic matching, Proc ACC (2002b), to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bloch, A.M. (2003). Dissipative Dynamics in Classical and Quantum Conservative Systems. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics